Fine Scale Spatio-Temporal Modelling of Urban Air Pollution

被引:3
|
作者
Liu, Xiaoxiao [1 ]
Bertazzon, Stefania [1 ]
机构
[1] Univ Calgary, Dept Geog, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Spatio-temporal model; Harmonic regression; Land use regression; Nitrogen dioxide; Fine scale estimates; LONG-TERM EXPOSURE; MYOCARDIAL-INFARCTION; MEASUREMENT ERROR; SPATIAL-ANALYSIS; MORTALITY;
D O I
10.1007/978-3-319-45738-3_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Urban air pollution is a leading environmental health concern. However, the association between urban air pollution and health outcomes is not consistently reported in the literature, likely because of inaccurate exposure assessment induced by spatial error. In this study, a spatio-temporal model is presented, which integrates harmonic regression and land use regression (LUR) to estimate urban air pollution at fine spatio-temporal scale. The space-time field is decomposed into space-time mean and space-time residuals. The mean is estimated by linear combinations of harmonic regression components, and the spatial field is modelled with LUR. The residuals account for spatio-temporal deviation from the mean model. Using data from a regulatory monitor network and geographic covariates from a LUR model, the study yields monthly nitrogen dioxide estimates at the postal code level for Calgary, Canada. The model yields a satisfactory fit (R2 = 0.78). The space-time residuals exhibit non-significant to moderate spatial and temporal autocorrelation.
引用
收藏
页码:210 / 224
页数:15
相关论文
共 50 条
  • [41] Spatio-temporal variation of groundwater pollution in urban wetlands and management strategies for zoning
    Yang, Xiao
    Jia, Chao
    Yang, Fan
    Yang, Haitao
    Yao, Yue
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 342
  • [42] An Approach to the Estimation of Chronic Air Pollution Effects Using Spatio-Temporal Information
    Greven, Sonja
    Dominici, Francesca
    Zeger, Scott
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 396 - 406
  • [43] Knowledge Discovery via SVM Aggregation for Spatio-temporal Air Pollution Analysis
    Ali, Shahid
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA ENGINEERING, 2018, 9 : 181 - 189
  • [44] Spatio-temporal stochastic modelling (METMAVI)
    Raquel Menezes
    A. Manuela Gonçalves
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1167 - 1169
  • [45] Spatio-temporal trajectory evolution and cause analysis of air pollution in Chengdu, China
    Wang, Xingjie
    Chen, Ling
    Guo, Ke
    Liu, Bingli
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2022, 72 (08) : 876 - 894
  • [46] Modelling spatio-temporal environmental data
    Rasinmäki, J
    ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [47] Spatio-temporal stochastic modelling (METMAVI)
    Menezes, Raquel
    Manuela Goncalves, A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1167 - 1169
  • [48] Modelling spatio-temporal variability of temperature
    Xiaofeng Cao
    Ostap Okhrin
    Martin Odening
    Matthias Ritter
    Computational Statistics, 2015, 30 : 745 - 766
  • [49] Regression calibration in air pollution epidemiology with exposure estimated by spatio-temporal modeling
    Spiegelman, Donna
    ENVIRONMETRICS, 2013, 24 (08) : 521 - 524
  • [50] BIG DATA ANALYSIS OF SPATIO-TEMPORAL VARIABLES FOR AIR ENVIRONMENTAL POLLUTION CONTROL
    Li, Ting
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (6A): : 6323 - 6331