The Helmholtz Equation in Domains Bounded by Closed Curves and Open Arcs

被引:0
|
作者
Krutitskii, P. A. [1 ]
Krutitskaya, N. Ch.
机构
[1] KIAM, Dept 4,Miusskaya Sq 4, Moscow 125047, Russia
[2] Moscow MV Lomonosov State Univ, Fac Phys, Dept Math, Moscow 119899, Russia
关键词
Boundary integral equations; open screens; wave scattering;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundary value problems for the Helmholtz equation in domains bounded by closed curves and open arcs are reduced to the uniquely solvable Fredholm integral equations of the second kind and index zero. Integral representation of the solutions of boundary value problems are obtained in the form of potentials.
引用
收藏
页码:336 / 338
页数:3
相关论文
共 50 条
  • [21] SOLUTION OF HELMHOLTZ EQUATION IN WEDGE SHAPED DOMAINS
    MONTOYA, R
    PLACHCO, FP
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 122 - 122
  • [22] HOMOGENEITY DEGREE OF HYPERSPACES OF ARCS AND SIMPLE CLOSED CURVES
    Hernandez-Gutierrez, Rodrigo
    Illanes, Alejandro
    Martinez-de-la-Vega, Veronica
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (02) : 463 - 476
  • [23] Improved accuracy for the Helmholtz equation in unbounded domains
    Turkel, E
    Farhat, C
    Hetmaniuk, U
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (15) : 1963 - 1988
  • [24] Difference potentials for the Helmholtz equation in exterior domains
    Ryaben'kii, VS
    Sofronov, IL
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 533 - 540
  • [25] The writhe of open and closed curves
    Berger, Mitchell A.
    Prior, Chris
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8321 - 8348
  • [26] Dimensional reduction for Helmholtz's equation on a bounded domain
    Kang-Man Liu
    Ivo Babuška
    Numerische Mathematik, 1997, 77 : 501 - 533
  • [27] Dimensional reduction for Helmholtz's equation on a bounded domain
    Liu, KM
    Babuska, I
    NUMERISCHE MATHEMATIK, 1997, 77 (04) : 501 - 533
  • [28] Fast discrete Helmholtz-Hodge decompositions in bounded domains
    Angot, Philippe
    Caltagirone, Jean-Paul
    Fabrie, Pierre
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 445 - 451
  • [29] INTRINSIC CHARACTERIZATION OF REGIONS BOUNDED BY CLOSED CURVES
    ARSOVE, MG
    DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) : 425 - &
  • [30] Stability of the orthogonality equation on bounded domains
    Jung, SM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) : 2655 - 2666