Indirect dark matter detection limits from the ultrafaint Milky Way satellite Segue 1

被引:60
|
作者
Essig, Rouven [1 ]
Sehgal, Neelima [2 ]
Strigari, Louis E. [2 ]
Geha, Marla [3 ]
Simon, Joshua D. [4 ]
机构
[1] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA
[2] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[3] Yale Univ, Dept Astron, New Haven, CT 06520 USA
[4] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 12期
关键词
DWARF SPHEROIDAL GALAXIES; GAMMA-RAY EMISSION;
D O I
10.1103/PhysRevD.82.123503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use new kinematic data from the ultrafaint Milky Way satellite Segue 1 to model its dark matter distribution and derive upper limits on the dark matter annihilation cross section. Using gamma-ray flux upper limits from the Fermi satellite and MAGIC, we determine cross section exclusion regions for dark matter annihilation into a variety of different particles including charged leptons. We show that these exclusion regions are beginning to probe the regions of interest for a dark matter interpretation of the electron and positron fluxes from PAMELA, Fermi, and HESS, and that future observations of Segue 1 have strong prospects for testing such an interpretation. We additionally discuss prospects for detecting annihilation with neutrinos using the IceCube detector, finding that in an optimistic scenario a few neutrino events may be detected. Finally, we use the kinematic data to model the Segue 1 dark matter velocity dispersion and constrain Sommerfeld enhanced models.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Constraints on Dark Matter Microphysics from the Milky Way Satellite Population (vol 878, 32, 2019)
    Nadler, Ethan O.
    Gluscevic, Vera
    Boddy, Kimberly K.
    Wechsler, Risa H.
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 897 (02)
  • [32] Exploring Dark Matter with Milky Way Substructure
    Kuhlen, Michael
    Madau, Piero
    Silk, Joseph
    SCIENCE, 2009, 325 (5943) : 970 - 973
  • [33] Evidence for dark matter in the inner Milky Way
    Iocco, Fabio
    Pato, Miguel
    Bertone, Gianfranco
    NATURE PHYSICS, 2015, 11 (03) : 245 - 248
  • [34] Is the dark matter halo of the Milky Way flattened?
    Ruzicka, A.
    Palous, J.
    Theis, C.
    ASTRONOMY & ASTROPHYSICS, 2007, 461 (01) : 155 - U95
  • [35] Dark matter debris flows in the Milky Way
    Lisanti, Mariangela
    Spergel, David N.
    PHYSICS OF THE DARK UNIVERSE, 2012, 1 (1-2) : 155 - 161
  • [36] Dark matter annihilation in the halo of the Milky Way
    Stoehr, F
    White, SDM
    Springel, V
    Tormen, G
    Yoshida, N
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 345 (04) : 1313 - 1322
  • [37] New dark matter analysis of milky way dwarf satellite galaxies with MADHATV 2
    Boddy, Kimberly K.
    Carter, Zachary J.
    Kumar, Jason
    Rufino, Luis
    Sandick, Pearl
    Tapia-Arellano, Natalia
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [38] Dark matter annihilation in the Milky Way halo
    Horiuchi, Shunsaku
    TAUP2007: TENTH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2008, 120
  • [39] GLAST and dark matter substructure in the Milky Way
    Kuhlen, Michael
    Diemand, Juerg
    Madau, Piero
    FIRST GLAST SYMPOSIUM, 2007, 921 : 135 - +
  • [40] The twisted dark matter halo of the Milky Way
    Shao, Shi
    Cautun, Marius
    Deason, Alis
    Frenk, Carlos S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (04) : 6033 - 6048