Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas

被引:6
|
作者
Del Sorbo, D. [1 ]
Feugeas, J. -L. [1 ]
Nicolai, Ph. [1 ]
Olazabal-Loume, M. [2 ]
Dubroca, B. [1 ]
Tikhonchuk, V. [1 ]
机构
[1] Univ Bordeaux, Ctr Lasers Intenses & Applicat, CNRS, CEA,UMR 5107, F-33405 Talence, France
[2] CEA CESTA, F-33114 Le Barp, France
关键词
High-energy-density physics; Inertial confinement fusion; Kinetic model; Magnetized plasmas; Nonlocal electron transport; FOKKER-PLANCK EQUATION; LASER-PRODUCED PLASMAS; HEAT-TRANSPORT; DISTRIBUTIONS; CONDUCTION; FIELDS;
D O I
10.1017/S0263034616000252
中图分类号
O59 [应用物理学];
学科分类号
摘要
Laser-produced high-energy-density plasmas may contain strong magnetic fields that affect the energy transport, which can be nonlocal. Models which describe the magnetized nonlocal transport are formally complicated and based on many approximations. This paper presents a more straightforward approach to the description of the electron transport in this regime, based on the extension of a reduced entropic model. The calculated magnetized heat fluxes are compared with the known asymptotic limits and applied for studying of a magnetized nonlocal plasma thermalization.
引用
收藏
页码:412 / 425
页数:14
相关论文
共 50 条
  • [41] Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas
    Gotchev, O. V.
    Knauer, J. P.
    Chang, P. Y.
    Jang, N. W.
    Shoup, M. J., III
    Meyerhofer, D. D.
    Betti, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (04):
  • [42] Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas
    Gao, L.
    Nilson, P. M.
    Igumenshchev, I. V.
    Haines, M. G.
    Froula, D. H.
    Betti, R.
    Meyerhofer, D. D.
    PHYSICAL REVIEW LETTERS, 2015, 114 (21)
  • [43] Time-resolved study of nonlocal electron heat transport in high temperature plasmas
    Ditmire, T
    Gumbrell, ET
    Smith, RA
    Djaoui, A
    Hutchinson, MHR
    PHYSICAL REVIEW LETTERS, 1998, 80 (04) : 720 - 723
  • [44] Model-Driven Manufacturing of High-Energy-Density Batteries: A Review
    Maksimovna Vakhrusheva, Daria
    Xu, Jun
    BATTERIES & SUPERCAPS, 2024,
  • [45] Measurements of turbulent mixing due to Kelvin-Helmholtz instability in high-energy-density plasmas
    Smalyuk, V. A.
    Hurricane, O. A.
    Hansen, J. F.
    Langstaff, G.
    Martinez, D.
    Park, H. -S.
    Raman, K.
    Remington, B. A.
    Robey, H. F.
    Schilling, O.
    Wallace, R.
    Elbaz, Y.
    Shimony, A.
    Shvarts, D.
    Di Stefano, C.
    Drake, R. P.
    Marion, D.
    Krauland, C. M.
    Kuranz, C. C.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (01) : 47 - 51
  • [46] Interfacial mixing in high-energy-density matter with a multiphysics kinetic model
    Haack, Jeffrey R.
    Hauck, Cory D.
    Murillo, Michael S.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [47] Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems
    Malko, Sophia
    Johnson, Courtney
    Schaeffer, Derek B.
    Fox, William
    Fiksel, Gennady
    APPLIED OPTICS, 2022, 61 (06) : C133 - C142
  • [48] SIMPLE-MODEL OF PINHOLE CLOSURE IN HIGH-ENERGY-DENSITY EXPERIMENTS
    HARRACH, RJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (08): : 2192 - 2194
  • [49] MODEL FOR PARTICLE-TRANSPORT IN HIGH-DENSITY PLASMAS
    COPPI, B
    SHARKY, N
    NUCLEAR FUSION, 1981, 21 (11) : 1363 - 1382
  • [50] Inductively coupled 30 T magnetic field platform for magnetized high-energy-density plasma studies
    Fiksel, G.
    Backhus, R.
    Barnak, D. H.
    Chang, P. -Y.
    Davies, J. R.
    Jacobs-Perkins, D.
    McNally, P.
    Spielman, R. B.
    Viges, E.
    Betti, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (08):