Lattice paths and generalized cluster complexes

被引:6
|
作者
Eu, Sen-Peng [1 ]
Fu, Tung-Shan [2 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
[2] Natl Pingtung Inst Commerce, Fac Math, Pingtung 900, Taiwan
关键词
lattice paths; generalized cluster complex; Schroder paths; Delannoy paths;
D O I
10.1016/j.jcta.2007.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a variant of the generalized Schroder paths and generalized Delannoy paths by giving a restriction on the positions of certain steps. This generalization turns out to be reasonable, as attested by the connection with the faces of generalized cluster complexes of types A and B. As a result, we derive Krattenthaler's F-triangles for these two types by a combinatorial approach in terms of lattice paths. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1183 / 1210
页数:28
相关论文
共 50 条
  • [1] Standard Complexes of Matroids and Lattice Paths
    Engstrom, Alexander
    Sanyal, Raman
    Stump, Christian
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (03) : 763 - 779
  • [2] Standard Complexes of Matroids and Lattice Paths
    Alexander Engström
    Raman Sanyal
    Christian Stump
    Vietnam Journal of Mathematics, 2022, 50 : 763 - 779
  • [3] Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths
    Barry, Paul
    Hennessy, Aoife
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (04)
  • [4] Generalized cluster complexes and Coxeter combinatorics
    Fomin, S
    Reading, N
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (44) : 2709 - 2757
  • [5] Generalized Schroder Matrices Arising from Enumeration of Lattice Paths
    Yang, Lin
    Yang, Sheng-Liang
    He, Tian-Xiao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 411 - 433
  • [6] Enumeration of generalized lattice paths by string types, peaks, and ascents
    Park, Youngja
    Park, SeungKyung
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2652 - 2659
  • [7] Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials
    Anne Schilling
    S. Ole Warnaar
    Communications in Mathematical Physics, 1999, 202 : 359 - 401
  • [8] ON COMBINATORICS OF MODIFIED LATTICE PATHS AND GENERALIZED q-SERIES
    Rana, M.
    Goyal, Megha
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2018, 13 (01) : 136 - 149
  • [9] Subword complexes, cluster complexes, and generalized multi-associahedra
    Cesar Ceballos
    Jean-Philippe Labbé
    Christian Stump
    Journal of Algebraic Combinatorics, 2014, 39 : 17 - 51
  • [10] Subword complexes, cluster complexes, and generalized multi-associahedra
    Ceballos, Cesar
    Labbe, Jean-Philippe
    Stump, Christian
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (01) : 17 - 51