Generalized Schroder Matrices Arising from Enumeration of Lattice Paths

被引:3
|
作者
Yang, Lin [1 ]
Yang, Sheng-Liang [1 ]
He, Tian-Xiao [2 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
[2] Illinois Wesleyan Univ, Dept Math, Bloomington, IL 61702 USA
基金
中国国家自然科学基金;
关键词
Riordan array; lattice path; Delannoy matrix; Schroder number; Schroder matrix; RIORDAN ARRAYS; NUMBERS; IDENTITIES;
D O I
10.21136/CMJ.2019.0348-18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new family of generalized Schroder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with stepsE= (1, 0),D= (1, 1),N= (0, 1), andD ' = (1, 2) and not going above the liney=x. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.
引用
收藏
页码:411 / 433
页数:23
相关论文
共 50 条
  • [1] Generalized Schröder Matrices Arising from Enumeration of Lattice Paths
    Lin Yang
    Sheng-Liang Yang
    Tian-Xiao He
    Czechoslovak Mathematical Journal, 2020, 70 : 411 - 433
  • [2] Enumeration of Fuss-Schroder paths
    An, Suhyung
    Jung, JiYoon
    Kim, Sangwook
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [3] Generalized Schroder paths arising from a combinatorial interpretation of generalized Laurent bi-orthogonal polynomials
    Ito, Mawo
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [4] SOME Q-ANALOGS OF THE SCHRODER NUMBERS ARISING FROM COMBINATORIAL STATISTICS ON LATTICE PATHS
    BONIN, J
    SHAPIRO, L
    SIMION, R
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (01) : 35 - 55
  • [5] Enumeration of generalized lattice paths by string types, peaks, and ascents
    Park, Youngja
    Park, SeungKyung
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2652 - 2659
  • [6] Lattice and Schroder paths with periodic boundaries
    Kung, Joseph P. S.
    de Mier, Anna
    Sun, Xinyu
    Yan, Catherine
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (06) : 2014 - 2027
  • [7] The research and progress of the enumeration of lattice paths
    Jishe Feng
    Xiaomeng Wang
    Xiaolu Gao
    Zhuo Pan
    Frontiers of Mathematics, 2022, 17 : 747 - 766
  • [8] Elliptic enumeration of nonintersecting lattice paths
    Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Vienna, Austria
    Mathematical Sciences Research Institute (MSRI); National Security Agency; University of California, San Diego (UCSD); US National Science Foundation (NSF); York University, 1600, 712-723 (2006):
  • [9] Elliptic enumeration of nonintersecting lattice paths
    Schlosser, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) : 505 - 521
  • [10] The research and progress of the enumeration of lattice paths
    Feng, Jishe
    Wang, Xiaomeng
    Gao, Xiaolu
    Pan, Zhuo
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (05) : 747 - 766