Application of Machine Learning Algorithms For Crack Detection in PVC Pipes

被引:1
|
作者
Khan, Muhammad Safeer [1 ]
Patil, Raj Vardhan [2 ]
机构
[1] Arkansas Tech Univ, Dept Elect Engn, Russellville, AR 72801 USA
[2] Arkansas Tech Univ, Dept Comp & Informat Sci, Russellville, AR 72801 USA
来源
关键词
Condition monitoring; acoustic propagation; piping networks; signal attenuation; machine learning;
D O I
10.1109/southeastcon42311.2019.9020541
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Most of the underground sewer infrastructure in United States uses Polyvinyl Chloride (PVC) pipes to transport toxic fluids. Cracks in underground PVC pipes are a major cause of effluent discharge in underground sewer systems. Released effluents not only pose risk to the environment, but are also a threat to public health. As current industry standard, utility operators use a closed circuit Television (CCTV) camera mounted crawler to pass through the pipes, and record video to classify condition of the piping network CCTV based systems are expensive and crew-hour intensive. Recently developed acoustic based pipeline inspection systems are being adopted by the utility operators. These systems, however, do not detect presence of cracks in pipes. This paper reports results of a study to monitor presence of cracks in PVC pipes using acoustic signals. The collected data from extensive laboratory trials is processed using machine learning algorithms to classify the difference between a clean and cracked pipe samples. We use Decision Tree, K-nearest neighbors (KNN), and Naive Bayes (NB) algorithms. The DT and KNN algorithm scores show the highest convergence between acoustic samples from a cracked pipe at frequencies greater than 3.0 kHz. The paper also lays out precision scores obtained from using machine learning algorithms on acoustic data from clean and cracked pipe samples.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Ensemble of Machine Learning Algorithms for Intrusion Detection
    Chou, Te-Shun
    Fan, Jeffrey
    Fan, Sharon
    Makki, Kia
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3976 - +
  • [32] ECG Arrhythmia Detection with Machine Learning Algorithms
    Pandey, Saroj Kumar
    Sodum, Vineetha Reddy
    Janghel, Rekh Ram
    Raj, Anamika
    DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 409 - 417
  • [33] The Application of Machine Learning Algorithms in Data Mining
    Zhang, Wei
    2016 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMMUNICATIONS TECHNOLOGY (IECT 2016), 2016, : 521 - 527
  • [34] Ransomware detection using machine learning algorithms
    Bae, Seong Il
    Lee, Gyu Bin
    Im, Eul Gyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18):
  • [35] Ransomware Classification and Detection With Machine Learning Algorithms
    Masum, Mohammad
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    Adnan, Muhaiminul Islam
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 316 - 322
  • [36] Evaluation of Machine Learning Algorithms for Malware Detection
    Akhtar, Muhammad Shoaib
    Feng, Tao
    SENSORS, 2023, 23 (02)
  • [37] Intrusion detection and prevention with machine learning algorithms
    Chang, Victor
    Boddu, Sreeja
    Xu, Qianwen Ariel
    Doan, Le Minh Thao
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (06) : 617 - 631
  • [38] Machine Learning Algorithms In Context Of Intrusion Detection
    Mehmood, Tahir
    Md Rais, Helmi B.
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 369 - 373
  • [39] Pothole Detection Using Machine Learning Algorithms
    Al Masud, A. K. M. Jobayer
    Sharin, Saraban Tasnim
    Shawon, Khandokar Farhan Tanvir
    Zaman, Zakia
    2021 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2021,
  • [40] Application of machine learning algorithms for prediction of sinter machine productivity
    Mallick, Arpit
    Dhara, Subhra
    Rath, Sushant
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6