Uncertainty-Aware Quickest Change Detection: An Experimental Study

被引:0
|
作者
Hare, James Zachary [1 ]
Kaplan, Lance [1 ]
机构
[1] DEVCOM Army Res Lab, Adelphi, MD 20783 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we study the problem of Quickest Change Detection which aims to detect when a stream of observations transitions from being drawn from a pre-change distribution to a post-change distribution as quickly as possible. Traditionally, either information is completely known about the distributions, or no information is known and their parameters are estimated using frequentist approaches, e.g., Generalized Likelihood Ratio test. Recently, the Uncertain Likelihood Ratio (ULR) test was proposed for the QCD problem which relaxes both of these assumptions to form a Bayesian test that allows for no knowledge, partial knowledge, and full knowledge of the parameters of the distributions. In this work, we extend the ULR test to improve the order of operations required to compute the test statistic using a windowing method to form the Windowed Uncertain Likelihood Ratio (W-ULR) algorithm. We then applied it to multivariate Gaussian observations and empirically evaluated the average detection delay and missed detections for various false alarm rates under various operating conditions. The results show that the W-ULR outperforms the (windowed) GLR test, which is consistent with the initial findings.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Uncertainty-Aware Principal Component Analysis
    Goertler, Jochen
    Spinner, Thilo
    Streeb, Dirk
    Weiskopf, Daniel
    Deussen, Oliver
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 822 - 831
  • [42] Uncertainty-Aware Authentication Model for IoT
    Heydari, Mohammad
    Mylonas, Alexios
    Katos, Vasilis
    Balaguer-Ballester, Emili
    Altaf, Amna
    Tafreshi, Vahid Heydari Fami
    COMPUTER SECURITY, ESORICS 2019, 2020, 11980 : 224 - 237
  • [43] Uncertainty-aware Topic Modeling Visualization
    Mueller, Valerie
    Sieg, Christian
    Linsen, Lars
    2021 IEEE 6TH WORKSHOP ON VISUALIZATION FOR THE DIGITAL HUMANITIES (VIS4DH 2021), 2021, : 12 - 18
  • [44] Uncertainty-aware Simulation of Adaptive Systems
    Jezequel, Jean-Marc
    Vallecillo, Antonio
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2023, 33 (03):
  • [45] Load Uncertainty-Aware Economic Dispatch
    Rawal, Keerti
    Ahmad, Aijaz
    2023 IEEE PES 15TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE, APPEEC, 2023,
  • [46] Quickest detection in the Wiener disorder problem with post-change uncertainty
    Yang, Heng
    Hadjiliadis, Olympia
    Ludkovski, Michael
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2017, 89 (3-4) : 654 - 685
  • [47] Uncertainty-aware LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buscher, Daniel
    Burgard, Wolfram
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 8277 - 8283
  • [48] Uncertainty-aware Wireless Sensor Networks
    Mal-Sarkar, Sanchita
    Sikder, Iftikhar U.
    Yu, Chansu
    Konangi, Vijay K.
    INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS, 2009, 7 (03) : 330 - 345
  • [49] Uncertainty-Aware RGBD Image Segmentation
    Yu, Chengxiao
    Wang, Xin
    Wang, Junqiu
    Zha, Hongbin
    2017 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS (CBS), 2017, : 97 - 102
  • [50] Uncertainty-aware Binary Neural Networks
    Zhao, Junhe
    Yang, Linlin
    Zhang, Baochang
    Guo, Guodong
    Doermann, David
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3441 - 3447