Divertor conceptual designs for a fusion power plant

被引:82
|
作者
Norajitra, Prachai [1 ]
Abdel-Khalik, Said I. [2 ]
Giancarli, Luciano M. [3 ]
Ihli, Thomas
Janeschitz, Guenter
Malang, Siegfried
Mazul, Igor V. [4 ]
Sardain, Pierre [5 ]
机构
[1] Forschungszentrum Karlsruhe, Inst Mat Res 3, D-76021 Karlsruhe, Germany
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] CEA Saclay, F-91191 Gif Sur Yvette, France
[4] DV Efremov Inst, Sci Tech Ctr Sintez, St Petersburg 196641, Russia
[5] EFDA CSU Garching, D-85748 Garching, Germany
基金
欧盟地平线“2020”;
关键词
Fusion power plant; PPCS; ARIES-CS; Helium-cooled divertor; HEMJ concept; Impingement cooling; High heat flux;
D O I
10.1016/j.fusengdes.2008.05.022
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Developing a divertor concept for fusion power plants to be built after ITER is deemed to be an urgent task to meet the EU Past Track scenario. This task is particularly challenging because of the wide range of requirements to be met, namely, the high incident peak heat flux, the blanket design with which the divertor has to be integrated, Sputtering erosion of the plasma-facing material caused by the incident particles from the plasma, radiation effects on the properties of structural materials, and efficient recovery and conversion of the considerable fraction (similar to 15%) of the total fusion thermal power incident oil the divertor. This paper provides an overview of the development of different conceptual divertor designs (water-cooled, liquid metal-cooled, and helium-cooled types): their advantages and disadvantages and expected performance are outlined and discussed. Emphasis is placed Oil summarizing the status and progress of R&D associated with He-cooled divertor designs which have been proposed in most of conceptual plant models in Europe and USA. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:893 / 902
页数:10
相关论文
共 50 条
  • [21] Assessment of occupational radiation exposure for two fusion power plant designs
    Natalizio, A
    Di Pace, L
    Pinna, T
    FUSION ENGINEERING AND DESIGN, 2001, 54 (3-4) : 375 - 385
  • [22] Conceptual design of the China fusion power plant FDS-II
    Wu, Y.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (10-12) : 1683 - 1689
  • [23] CONCEPTUAL DESIGNS OF TOKAMAK FUSION-REACTORS
    SEKI, Y
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1989, 26 (01) : 189 - 194
  • [24] Power plant designs
    Dolan, Thomas J.
    Waganer, Lester M.
    Cadwallader, Lee C.
    Lecture Notes in Energy, 2013, 19 : 653 - 698
  • [25] Sensitivity analysis of fusion power plant designs using the SYCOMORE system code
    Kahn, S.
    Reux, C.
    Artaud, J-F
    Aiello, G.
    Blanchard, J-B
    Bucalossi, J.
    Dardour, S.
    Di Gallo, L.
    Galassi, D.
    Imbeaux, F.
    Jaboulay, J-C
    Owsiak, M.
    Piot, N.
    Radhakrishnan, R.
    Zani, L.
    NUCLEAR FUSION, 2020, 60 (01)
  • [26] Power plant conceptual design for fast ignition heavy-ion fusion
    Medin, S
    Basko, M
    Churazov, M
    Ivanova, P
    Koshkarev, D
    Orlov, Y
    Parshikov, A
    Sharkov, B
    Suslin, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 544 (1-2): : 300 - 309
  • [27] Conceptual model of a solid energy storage for the pulsed demonstration fusion power plant
    Zacha, Pavel
    Zabcikova, Michaela
    Entler, Slavomir
    Stepanek, Jan
    Dostal, Vaclav
    Syblik, Jan
    FUSION ENGINEERING AND DESIGN, 2021, 168
  • [28] OSIRIS AND SOMBRERO INERTIAL FUSION POWER-PLANT DESIGNS - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
    MEIER, WR
    FUSION ENGINEERING AND DESIGN, 1994, 25 (1-3) : 145 - 157
  • [29] Conceptual design of the cryogenic system for the helical-type fusion power plant FFHR
    Yamada, S.
    Sagara, A.
    Imagawa, S.
    Mito, T.
    Motojima, O.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) : 2817 - 2823
  • [30] Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant
    Palermo, I.
    Veredas, G.
    Gomez-Ros, J. M.
    Sanz, J.
    Ibarra, A.
    NUCLEAR FUSION, 2016, 56 (01)