On System Identification of Nonlinear State-Space Models Based on Variational Bayes: Multimodal Distribution Case

被引:0
|
作者
Taniguchi, Akihiro [1 ]
Fujimoto, Kenji [2 ]
Nishida, Yoshiharu [1 ]
机构
[1] Kobe Steel Ltd, Nishi Ku, 5-5,Takatsukadai 1 Chome, Kobe, Hyogo 6512271, Japan
[2] Kyoto Univ, Dept Aeronaut & Astronaut, Nishikyo Ku, Kyoto 6158540, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a parameter estimation method for nonlinear state-space models based on the variational Bayes. It is shown that the variational posterior distribution of the hidden states is equivalent the probability estimated by a nonlinear smoother of an augmented nonlinear state-space model. This enables us to obtain the variational posterior distribution of the hidden states by implementing a variety of existing nonlinear filtering and smoothing algorithms. By employing a Gaussian mixture distribution as a candidate probability density function of the hidden states, we propose an algorithm to compute multimodal posterior distributions which are not able to be handled by the existing results.
引用
收藏
页码:2454 / 2459
页数:6
相关论文
共 50 条
  • [21] Nonlinear state-space system identification with robust laplace model
    Liu, Xin
    Yang, Xianqiang
    Liu, Xiaofeng
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) : 1492 - 1501
  • [22] Identification of nonlinear state-space time-delay system
    Liu, Xin
    Zhang, Hang
    Zhu, Pengbo
    Yang, Xianqiang
    Du, Zhiwei
    ASSEMBLY AUTOMATION, 2020, 40 (01) : 22 - 30
  • [23] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [24] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [25] State-Space Models for Control and Identification
    2005, Springer Verlag (308):
  • [26] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    AUTOMATICA, 2018, 90 : 54 - 61
  • [27] IDENTIFICATION OF A CLASS OF NONLINEAR STATE-SPACE MODELS USING RPE TECHNIQUES
    ZHOU, WW
    BLANKE, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) : 312 - 316
  • [28] State-space models for control and identification
    Raynaud, HF
    Kulcsár, C
    Hammi, R
    ADVANCES IN COMMUNICATION CONTROL NETWORKS, 2005, 308 : 177 - 197
  • [29] Residual models and stochastic realization in state-space system identification
    Johansson, R
    Verhaegen, M
    Chou, CT
    Robertsson, A
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3439 - 3444
  • [30] Identification of State-Space Models With Banded Toeplitz System Matrices
    Yu, Chengpu
    Xia, Yinqiu
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1146 - 1151