PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS

被引:18
|
作者
Bruzzo, Ugo [1 ,2 ]
Grassi, Antonella [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
关键词
Picard number; hypersurfaces; simplicial toric varieties; WEIGHTED PROJECTIVE SPACES; LEFSCHETZ THEOREM; VARIETIES; SURFACES; NUMBERS; TORELLI;
D O I
10.1142/S0129167X12500280
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the usual sufficient criterion for a very general hypersurface in a smooth projective manifold to have the same Picard number as the ambient variety can be generalized to quasi-smooth hypersurfaces in complete simplicial toric varieties. This sufficient condition always holds for very general K3 surfaces embedded in Fano toric 3-folds.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On Kummer 3-folds
    Maria Donten
    [J]. Revista Matemática Complutense, 2011, 24 : 465 - 492
  • [32] Open Gromov-Witten Invariants of Toric Calabi-Yau 3-Folds
    Bohan Fang
    Chiu-Chu Melissa Liu
    [J]. Communications in Mathematical Physics, 2013, 323 : 285 - 328
  • [34] On Kummer 3-folds
    Donten, Maria
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (02): : 465 - 492
  • [35] Open Gromov-Witten Invariants of Toric Calabi-Yau 3-Folds
    Fang, Bohan
    Liu, Chiu-Chu Melissa
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (01) : 285 - 328
  • [36] Flips for 3-folds and 4-folds
    Roth, Bruce
    [J]. MATHEMATICAL GAZETTE, 2010, 94 (529): : 188 - 189
  • [37] BIRATIONAL MAPS OF 3-FOLDS
    Chen, Jungkai Alfred
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (06): : 1619 - 1642
  • [38] DERIVED CATEGORIES OF SMALl TORIC CALABI-YAU 3-FOLDS AND CURVE COUNTING INVARIANTS
    Nagao, Kentaro
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (04): : 965 - 1007
  • [39] Geodesics in hyperbolic 3-folds
    Gehring, FW
    Martin, GJ
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1997, 44 (02) : 331 - 343
  • [40] TENDENCIOUS SURVEY OF 3-FOLDS
    REID, M
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 333 - 344