Accumulation points of iterated function systems

被引:0
|
作者
Keen, L [1 ]
Lakic, N
机构
[1] CUNY Herbert H Lehman Coll, Dept Math, Bronx, NY 10468 USA
[2] CUNY, Grad Ctr, Bronx, NY 10468 USA
来源
COMPLEX DYNAMICS | 2006年 / 396卷
基金
美国国家科学基金会;
关键词
random iteration; iterated function systems; Blaschke products;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:101 / +
页数:2
相关论文
共 50 条
  • [31] Dual systems of algebraic iterated function systems
    Rao, Hui
    Wen, Zhi-Ying
    Yang, Ya-Min
    ADVANCES IN MATHEMATICS, 2014, 253 : 63 - 85
  • [32] Orbital fuzzy iterated function systems
    Mihail, Alexandru
    Savu, Irina
    FUZZY SETS AND SYSTEMS, 2023, 467
  • [33] ON (n, m)-ITERATED FUNCTION SYSTEMS
    Balu, Rinju
    Mathew, Sunil
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (04)
  • [34] Stability of iterated function systems on the circle
    Szarek, Tomasz
    Zdunik, Anna
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 365 - 378
  • [35] Iterated Function Systems Enriched with Symmetry
    Krzysztof Leśniak
    Nina Snigireva
    Constructive Approximation, 2022, 56 : 555 - 575
  • [36] A NOTE ON SPECIFICATION FOR ITERATED FUNCTION SYSTEMS
    Cordeiro, Welington
    Denker, Manfred
    Yuri, Michiko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3475 - 3485
  • [37] Admissible strings and iterated function systems
    Vallin, RW
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (03) : 273 - 278
  • [38] Infinite iterated function systems with overlaps
    Ngai, Sze-Man
    Tong, Ji-Xi
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 890 - 907
  • [39] Patterns of bifurcation in iterated function systems
    Bahar, S
    CHAOS SOLITONS & FRACTALS, 1996, 7 (02) : 205 - 210
  • [40] Interpolation type iterated function systems
    Miculescu, Radu
    Mihail, Alexandru
    Pacurar, Cristina Maria
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)