Super-resolution Analysis for Passive Microwave Images Using FIPOCS

被引:0
|
作者
Wang, Xue [1 ]
Wu, Jin [2 ]
Wang, Jin [1 ]
Adjouadi, Malek [1 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33199 USA
[2] Wuhan Univ Sci & Technol, Coll Informat Sci & Engn, Wuhan, Peoples R China
来源
FIFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2012): COMPUTER VISION, IMAGE ANALYSIS AND PROCESSING | 2013年 / 8783卷
基金
美国国家科学基金会;
关键词
passive microwave images; super-resolution; fractal interpolation; improved projection;
D O I
10.1117/12.2010721
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Passive microwave images frequently have low resolution. Thus, super-resolution analysis is of great importance to improve application of passive microwave imaging for object detection. In this study, we propose the FIPOCS (Fractal interpolation with Improved Projection onto Convex Sets) technique to enhance resolution. The experimental result shows that the resolution of passive microwave image is improved when utilizing the fractal interpolation to the LR image before applying the IPOCS technique.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Automatic detection in a maritime environment using super-resolution images
    van Valkenburg-van Haarst, Tanja Y. C.
    Scholte, Krispijn A.
    ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS VII, 2010, 7834
  • [42] Super-resolution of compressed images using enhanced attention network
    Wang, Xinhuan
    Wang, Zhengyong
    He, Xiaohai
    Ren, Chao
    Karn, Pradeep
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [43] Simultaneous Super-Resolution of Depth and Images using a Single Camera
    Lee, Hee Seok
    Lee, Kyoung Mu
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 281 - 288
  • [44] Using super-resolution images to improve the measurement accuracy of DIC
    Wang, Yueqi
    Lava, Pascal
    Debruyne, Dimitri
    OPTICAL MEASUREMENT TECHNIQUES FOR STRUCTURES & SYSTEMS III, 2016, : 353 - 361
  • [45] Accelerating Super-Resolution and Visual Task Analysis in Medical Images
    Zamzmi, Ghada
    Rajaraman, Sivaramakrishnan
    Antani, Sameer
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [46] Breaking the limitation of manifold analysis for super-resolution of facial images
    Park, Sung Won
    Savvides, Marios
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 573 - 576
  • [47] SUPER RESOLUTION RECONSTRUCTION TECHNIQUE IN PASSIVE MICROWAVE IMAGES OF ARCTIC SEA ICE
    Liu, Xiaomin
    Feng, Tiantian
    Zhao, Junqiao
    Li, Rongxing
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4234 - 4237
  • [48] Resolution enhancement of microwave sensors using super-resolution generative adversarial network
    Kazemi, Nazli
    Musilek, Petr
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [49] Breast tumor classification in ultrasound images using texture analysis and super-resolution methods
    Abdel-Nasser, Mohamed
    Melendez, Jaime
    Moreno, Antonio
    Omer, Osama A.
    Puig, Domenec
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 59 : 84 - 92
  • [50] Super-resolution reconstruction using insufficient number of low-resolution images
    Misaizu, Hiroyuki
    Inamura, Minoru
    IMETI 2008: INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING AND TECHNOLOGICAL INNOVATION, VOL II, PROCEEDINGS, 2008, : 261 - +