HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues

被引:10
|
作者
Li, Gen [1 ]
Jima, Dereje [2 ]
Wright, Fred A. [2 ,3 ,4 ]
Nobel, Andrew B. [5 ,6 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, 722 W 168 St, New York, NY 10027 USA
[2] North Carolina State Univ, Ctr Human Hlth & Environm, 850 Main Campus Dr, Raleigh, NC 27695 USA
[3] North Carolina State Univ, Bioinformat Res Ctr, 850 Main Campus Dr, Raleigh, NC 27695 USA
[4] North Carolina State Univ, Dept Stat & Biol Sci, 2311 Stinson Dr, Raleigh, NC 27695 USA
[5] Univ N Carolina, Dept Stat & Operat Res, 318 E Cameron Ave, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, Dept Biostat, 318 E Cameron Ave, Chapel Hill, NC 27599 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Expression quantitative trait loci; Genotype-tissue expression project; Empirical Bayes; Tissue specific; Local false discovery rate; FALSE DISCOVERY RATE; GENE-EXPRESSION; EMPIRICAL BAYES;
D O I
10.1186/s12859-018-2088-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Expression quantitative trait loci (eQTL) analysis identifies genetic markers associated with the expression of a gene. Most existing eQTL analyses and methods investigate association in a single, readily available tissue, such as blood. Joint analysis of eQTL in multiple tissues has the potential to improve, and expand the scope of, single-tissue analyses. Large-scale collaborative efforts such as the Genotype-Tissue Expression (GTEx) program are currently generating high quality data in a large number of tissues. However, computational constraints limit genome-wide multi-tissue eQTL analysis. Results: We develop an integrative method under a hierarchical Bayesian framework for eQTL analysis in a large number of tissues. The model fitting procedure is highly scalable, and the computing time is a polynomial function of the number of tissues. Multi-tissue eQTLs are identified through a local false discovery rate approach, which rigorously controls the false discovery rate. Using simulation and GTEx real data studies, we show that the proposed method has superior performance to existing methods in terms of computing time and the power of eQTL discovery. Conclusions: We provide a scalable method for eQTL analysis in a large number of tissues. The method enables the identification of eQTL with different configurations and facilitates the characterization of tissue specificity.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Expression Quantitative Trait Loci Mapping in the Human Colon
    Hulur, Imge
    Skol, Andrew
    Llor, Xavier
    Onel, Kenan
    Ellis, Nathan A.
    Kupfer, Sonia
    GASTROENTEROLOGY, 2014, 146 (05) : S125 - S126
  • [32] Characterization of Expression Quantitative Trait Loci in the Human Colon
    Singh, Tarjinder
    Levine, Adam P.
    Smith, Philip J.
    Smith, Andrew M.
    Segal, Anthony W.
    Barrett, Jeffrey C.
    INFLAMMATORY BOWEL DISEASES, 2015, 21 (02) : 251 - 256
  • [33] Single Cell Expression Quantitative Trait Loci (eQTL) Analysis of Established Systemic Lupus Erythematosus (SLE)-Risk Loci in Lupus Patient Monocytes
    Ghodke-Puranik, Yogita
    Jin, Zhongbo
    Fan, Wei
    Jensen, Mark A.
    Dorschner, Jessica M.
    Vsetecka, Danielle
    Amin, Shreyasee
    Makol, Ashima
    Ernste, Floranne C.
    Osborn, Thomas
    Moder, Kevin
    Chowdhary, Vaidehi
    Niewold, Timothy
    ARTHRITIS & RHEUMATOLOGY, 2017, 69
  • [34] Human placental expression quantitative trait loci (eQTL) identified among genetic variants linked to complex traits and disease susceptibility
    Kikas, T.
    Rull, K.
    Beaumont, R. N.
    Freathy, R. M.
    Laan, M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1740 - 1740
  • [35] IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms
    Moradi, Afshin
    Whatmore, Paul
    Farashi, Samaneh
    Barrero, Roberto A.
    Batra, Jyotsna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [36] Expression quantitative trait loci (eQTL) mapping in a multicenter cross-sectional study of Alopecia Areata
    Cerise, J.
    Jabbari, A.
    Petukhova, L. M.
    Duvic, M.
    Hordinsky, M. K.
    Norris, D. A.
    Price, V. H.
    Mackay-Wiggan, J.
    Clynes, R.
    Christiano, A. M.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2016, 136 (05) : S70 - S70
  • [37] Expression quantitative trait loci analysis of nasopharyngeal carcinoma
    Su, W.
    Zhang, J.
    Chang, K.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1017 - 1018
  • [38] Exploiting expression patterns across multiple tissues to map expression quantitative trait loci
    Acharya, Chaitanya R.
    McCarthy, Janice M.
    Owzar, Kouros
    Allen, Andrew S.
    BMC BIOINFORMATICS, 2016, 17
  • [39] Exploiting expression patterns across multiple tissues to map expression quantitative trait loci
    Chaitanya R. Acharya
    Janice M. McCarthy
    Kouros Owzar
    Andrew S. Allen
    BMC Bioinformatics, 17
  • [40] Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe
    Cornelis Blauwendraat
    Margherita Francescatto
    J. Raphael Gibbs
    Iris E. Jansen
    Javier Simón-Sánchez
    Dena G. Hernandez
    Allissa A. Dillman
    Andrew B. Singleton
    Mark R. Cookson
    Patrizia Rizzu
    Peter Heutink
    Genome Medicine, 8