HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues

被引:10
|
作者
Li, Gen [1 ]
Jima, Dereje [2 ]
Wright, Fred A. [2 ,3 ,4 ]
Nobel, Andrew B. [5 ,6 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, 722 W 168 St, New York, NY 10027 USA
[2] North Carolina State Univ, Ctr Human Hlth & Environm, 850 Main Campus Dr, Raleigh, NC 27695 USA
[3] North Carolina State Univ, Bioinformat Res Ctr, 850 Main Campus Dr, Raleigh, NC 27695 USA
[4] North Carolina State Univ, Dept Stat & Biol Sci, 2311 Stinson Dr, Raleigh, NC 27695 USA
[5] Univ N Carolina, Dept Stat & Operat Res, 318 E Cameron Ave, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, Dept Biostat, 318 E Cameron Ave, Chapel Hill, NC 27599 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Expression quantitative trait loci; Genotype-tissue expression project; Empirical Bayes; Tissue specific; Local false discovery rate; FALSE DISCOVERY RATE; GENE-EXPRESSION; EMPIRICAL BAYES;
D O I
10.1186/s12859-018-2088-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Expression quantitative trait loci (eQTL) analysis identifies genetic markers associated with the expression of a gene. Most existing eQTL analyses and methods investigate association in a single, readily available tissue, such as blood. Joint analysis of eQTL in multiple tissues has the potential to improve, and expand the scope of, single-tissue analyses. Large-scale collaborative efforts such as the Genotype-Tissue Expression (GTEx) program are currently generating high quality data in a large number of tissues. However, computational constraints limit genome-wide multi-tissue eQTL analysis. Results: We develop an integrative method under a hierarchical Bayesian framework for eQTL analysis in a large number of tissues. The model fitting procedure is highly scalable, and the computing time is a polynomial function of the number of tissues. Multi-tissue eQTLs are identified through a local false discovery rate approach, which rigorously controls the false discovery rate. Using simulation and GTEx real data studies, we show that the proposed method has superior performance to existing methods in terms of computing time and the power of eQTL discovery. Conclusions: We provide a scalable method for eQTL analysis in a large number of tissues. The method enables the identification of eQTL with different configurations and facilitates the characterization of tissue specificity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues
    Gen Li
    Dereje Jima
    Fred A. Wright
    Andrew B. Nobel
    BMC Bioinformatics, 19
  • [2] Overlap of expression Quantitative Trait Loci (eQTL) in human brain and blood
    McKenzie, Marna
    Henders, Anjali K.
    Caracella, Anthony
    Wray, Naomi R.
    Powell, Joseph E.
    BMC MEDICAL GENOMICS, 2014, 7
  • [3] Overlap of expression Quantitative Trait Loci (eQTL) in human brain and blood
    Marna McKenzie
    Anjali K Henders
    Anthony Caracella
    Naomi R Wray
    Joseph E Powell
    BMC Medical Genomics, 7
  • [4] Expression Quantitative Trait Loci -eQTL- Analysis in Systemic Sclerosis
    Kerick, Martin
    Gonzalez Serna, David
    Teruel, Maria
    Babaei, Sepideh
    Acosta-Herrera, Marialbert
    Carnero-Montoro, Elena
    Makowska, Zuzanna
    Buttgereit, Anne
    Barturen, Guillermo
    Hayat, Sikander
    Kageyama, Jorge
    Martinez-Bueno, Manuel
    Lesche, Ralf
    Alarcon-Riquelme, Marta
    Martin, Javier
    ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [5] Detection and interpretation of expression quantitative trait loci (eQTL)
    Michaelson, Jacob J.
    Loguercio, Salvatore
    Beyer, Andreas
    METHODS, 2009, 48 (03) : 265 - 276
  • [6] Genome-wide expression quantitative trait loci (eQTL) analysis in maize
    Holloway, Beth
    Luck, Stanley
    Beatty, Mary
    Rafalski, J-Antoni
    Li, Bailin
    BMC GENOMICS, 2011, 12
  • [7] Genome-wide expression quantitative trait loci (eQTL) analysis in maize
    Beth Holloway
    Stanley Luck
    Mary Beatty
    J-Antoni Rafalski
    Bailin Li
    BMC Genomics, 12
  • [8] Statistical methods for expression quantitative trait loci (eQTL) mapping
    Kendziorski, CM
    Chen, M
    Yuan, M
    Lan, H
    Attie, AD
    BIOMETRICS, 2006, 62 (01) : 19 - 27
  • [9] Proximity model for expression quantitative trait loci (eQTL) detection
    Gelfond, Jonathan A. L.
    Ibrahim, Joseph G.
    Zou, Fei
    BIOMETRICS, 2007, 63 (04) : 1108 - 1116
  • [10] Expression Quantitative Trait Loci (eQTL) Mapping in Puerto Rican Children
    Chen, Wei
    Brehm, John M.
    Lin, Jerome
    Wang, Ting
    Forno, Erick
    Acosta-Perez, Edna
    Boutaoui, Nadia
    Canino, Glorisa
    Celedon, Juan C.
    PLOS ONE, 2015, 10 (03):