Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks

被引:0
|
作者
Ichikawa, Taisei [1 ]
Masuda, Yutaka [1 ]
Ishihara, Tohru [1 ]
Shinya, Akihiko [2 ]
Notomi, Masaya [2 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Furo Cho,Chikusa Ku, Nagoya, Aichi, Japan
[2] NTT Nanophoton Ctr, Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, Japan
关键词
optical computing; neuromorphic computing; recurrent neural network;
D O I
10.1109/ISVLSI54635.2022.00087
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Optoelectronic implementation of artificial neural networks (ANNs) has been attracting significant attention due to its potential for low-power computation at the speed of light. Among the ANNs, adopting recurrent neural network (RNN) is a promising solution since it provides sufficient inference accuracy with a more compact structure than other ANNs. This paper proposes a novel optoelectronic architecture of RNN. The key idea is to implement the vector-matrix multiplication optically to exploit the speed of light and implement the activation and feedback electronically to exploit the controllability of electronics. The electronics part is composed of an electrical feedback circuit with a dynamic latch to synchronize the recurrent loops with a clock signal. Using a commercial optoelectronic circuit simulator, we confirm the correct behavior of the optoelectronic RNN. Experimental results obtained using TensorFlow show that the proposed optoelectronic RNN achieves more than 98% inference accuracy in image classification with a minimal footprint without sacrificing low-power and high-speed nature of light.
引用
收藏
页码:390 / 393
页数:4
相关论文
共 50 条
  • [1] Power-Efficient Implementation of Ternary Neural Networks in Edge Devices
    Molina, Miguel
    Mendez, Javier
    Morales, Diego P.
    Castillo, Encarnacion
    Lopez Vallejo, Marisa
    Pegalajar, Manuel
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20111 - 20121
  • [2] Power-Efficient Deep Neural Networks with Noisy Memristor Implementation
    Dupraz, Elsa
    Varshney, Lav R.
    Leduc-Primeau, Francois
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [3] A Power-efficient Accelerator for Convolutional Neural Networks
    Sun, Fan
    Wang, Chao
    Gong, Lei
    Xu, Chongchong
    Zhang, Yiwei
    Lu, Yuntao
    Li, Xi
    Zhou, Xuehai
    2017 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2017, : 631 - 632
  • [4] DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator
    Gao, Chang
    Neil, Daniel
    Ceolini, Enea
    Liu, Shih-Chii
    Delbruck, Tobi
    PROCEEDINGS OF THE 2018 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'18), 2018, : 21 - 30
  • [5] Design of Power-Efficient Training Accelerator for Convolution Neural Networks
    Hong, JiUn
    Arslan, Saad
    Lee, TaeGeon
    Kim, HyungWon
    ELECTRONICS, 2021, 10 (07)
  • [6] A Power-Efficient Neuromorphic Digital Implementation of Neural-Glial Interactions
    Bicaku, Angeliki
    Sapounaki, Maria
    Kakarountas, Athanasios
    Tasoulis, Sotiris K.
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2023, 13 (01)
  • [7] Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks
    Mrazek, Vojtech
    Sarwar, Syed Shakib
    Sekanina, Lukas
    Vasicek, Zdenek
    Roy, Kaushik
    2016 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2016,
  • [8] Power-Efficient Accelerator Design for Neural Networks Using Computation Reuse
    Yasoubi, Ali
    Hojabr, Reza
    Modarressi, Mehdi
    IEEE COMPUTER ARCHITECTURE LETTERS, 2017, 16 (01) : 72 - 75
  • [9] Small-footprint Spiking Neural Networks for Power-efficient Keyword Spotting
    Pedroni, Bruno U.
    Sheik, Sadique
    Mostafa, Hesham
    Paul, Somnath
    Augustine, Charles
    Cauwenberghs, Gert
    2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 591 - 594
  • [10] A Compact and Power-Efficient Noise Generator for Stochastic Simulations
    Zhao, Haixiang
    Sarpeshkar, Rahul
    Mandal, Soumyajit
    2021 IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2021, : 806 - 811