On the Time-Domain Response of Havriliak-Negami Dielectrics

被引:16
|
作者
Causley, Matthew F. [1 ]
Petropoulos, Peter G. [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] New Jersey Inst Technol, Dept Math, Newark, NJ 07102 USA
关键词
Debye dielectric model; dispersive dielectrics; fractional relaxation; Havriliak-Negami dielectric model; Maxwell equations; time-domain; RELAXATION; PULSES;
D O I
10.1109/TAP.2013.2246536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We apply a combination of asymptotic and numerical methods to study electromagnetic pulse propagation in the Havriliak-Negami permittivity model of fractional relaxation. This dielectric model contains the Cole-Cole and Cole-Davidson models as special cases. We analytically determine the impulse response at short and long distances behind the wavefront, and validate our results with numerical methods for performing inverse Laplace transforms and for directly solving the time-domain Maxwell equations in such dielectrics. We find that the time-domain response of Havriliak-Negami dielectrics is significantly different from that obtained for Debye dielectrics. This makes possible using pulse propagation measurements in TDR setups in order to determine the appropriate dielectric model, and its parameters, for the actual dielectric whose properties are being measured.
引用
收藏
页码:3182 / 3189
页数:8
相关论文
共 50 条
  • [21] Evaluation of the diagenesis degree in archaeological bones through the Havriliak-Negami equation
    Lambri, M. L.
    Lambri, O. A.
    Weidenfeller, M.
    Weidenfeller, B.
    Bonifacich, F. G.
    Zelada, G. I.
    Rocchietti, A. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [22] Scaling properties of the diffusion process underlying the Havriliak-Negami relaxation function
    Weron, K
    Jurlewicz, A
    DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2, 2005, 237-240 : 1093 - 1100
  • [23] THE EQUIVALENT HAVRILIAK-NEGAMI MODEL FOR CHARACTERIZING THE DYNAMIC PROPERTIES OF VISCOELASTIC DAMPERS
    Li, Qiang-Qiang
    Xu, Zhao-Dong
    Dong, Yao-Rong
    He, Zhen-Hua
    Xu, Yeshou
    Zhu, Chen
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2021, 16 (04) : 471 - 486
  • [24] Grunwald-Letnikov operators for fractional relaxation in Havriliak-Negami models
    Garrappa, Roberto
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 38 : 178 - 191
  • [25] Incorporating the Havriliak-Negami dielectric model in the FD-TD method
    Causley, Matthew F.
    Petropoulos, Peter G.
    Jiang, Shidong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3884 - 3899
  • [26] A program for the fitting of up to three Havriliak-Negami dispersions to dielectric data
    Grosse, Constantino
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 600 : 318 - 323
  • [27] Recursive system identification for Havriliak-Negami functions by using modified LMRPEM method
    Duhe, Jean-Francois
    Victor, Stephane
    Melchior, Pierre
    IFAC PAPERSONLINE, 2024, 58 (12): : 13 - 18
  • [28] Trap-controlled fractal diffusion model of the Havriliak-Negami dielectric relaxation
    Khamzin, A. A.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 524
  • [29] A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami media
    Bia, P.
    Caratelli, D.
    Mescia, L.
    Cicchetti, R.
    Maione, G.
    Prudenzano, F.
    SIGNAL PROCESSING, 2015, 107 : 312 - 318
  • [30] Extension of Modified Havriliak-Negami Model to Characterize Linear Viscoelastic Properties of Asphalt Binders
    Zhao, Yanqing
    Chen, Peisong
    Cao, Dandan
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (05)