SMOKE DETECTION USING SPATIO-TEMPORAL ANALYSIS, MOTION MODELING AND DYNAMIC TEXTURE RECOGNITION

被引:0
|
作者
Barmpoutis, Panagiotis [1 ]
Dimitropoulos, Kosmas [1 ]
Grammalidis, Nikos [1 ]
机构
[1] ITT CERTH, Inst Informat Technol, 1st Km Thermi Panorama Rd, Thessaloniki 57001, Greece
关键词
Smoke detection; histograms of oriented gradients; histograms of oriented optical flow; dynamic textures analysis; spatio-temporal modeling;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel method for video-based smoke detection, which aims to discriminate smoke from smoke-colored moving objects by applying spatio-temporal analysis, smoke motion modeling and dynamic texture recognition. Initially, candidate smoke regions in a frame are identified using background subtraction and color analysis based on the HSV model. Subsequently, spatio-temporal smoke modeling consisting of spatial energy analysis and spatio-temporal energy analysis is applied in the candidate regions. In addition, histograms of oriented gradients and optical flows (HOGHOFs) are computed to take into account both appearance and motion information, while dynamic texture recognition is applied in each candidate region using linear dynamical systems and a bag of systems approach. Dynamic score combination by mean value is finally used to determine whether there is smoke or not in each candidate image region. Experimental results presented in the paper show the great potential of the proposed approach.
引用
收藏
页码:1078 / 1082
页数:5
相关论文
共 50 条
  • [21] Spatio-temporal modeling for overactuated motion control
    Tacx, Paul
    van de Vosse, Matthijs
    Voorhoeve, Robbert
    Witvoet, Gert
    Heertjes, Marcel
    Oomen, Tom
    [J]. Mechatronics, 2025, 105
  • [22] Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis
    Yu Hao
    Zhi-Jie Xu
    Ying Liu
    Jing Wang
    Jiu-Lun Fan
    [J]. International Journal of Automation and Computing, 2019, 16 : 27 - 39
  • [23] Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis
    Yu Hao
    Zhi-Jie Xu
    Ying Liu
    Jing Wang
    Jiu-Lun Fan
    [J]. International Journal of Automation and Computing, 2019, (01) : 27 - 39
  • [24] Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis
    Hao, Yu
    Xu, Zhi-Jie
    Liu, Ying
    Wang, Jing
    Fan, Jiu-Lun
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (01) : 27 - 39
  • [25] Spatio-temporal deep learning fire smoke detection
    Wu Fan
    Wang Hui-qin
    Wang Ke
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (08) : 1186 - 1195
  • [26] Modeling Dynamic Beach Objects Using Spatio-Temporal Ontologies
    van de Vlag, D.
    Stein, A.
    [J]. JOURNAL OF ENVIRONMENTAL INFORMATICS, 2006, 8 (01) : 22 - 33
  • [27] Spatio-temporal pattern detection using dynamic Bayesian networks
    Denis, N
    Jones, E
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4533 - 4538
  • [28] Dynamic Texture Recognition Using Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields
    Jansson, Ylva
    Lindeberg, Tony
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (09) : 1369 - 1398
  • [29] Dynamic Texture Recognition Using Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields
    Ylva Jansson
    Tony Lindeberg
    [J]. Journal of Mathematical Imaging and Vision, 2018, 60 : 1369 - 1398
  • [30] DYNAMIC SPATIO-TEMPORAL GRAPH CONVOLUTIONAL NETWORKS FOR CARDIAC MOTION ANALYSIS
    Lu, Ping
    Bai, Wenjia
    Rueckert, Daniel
    Noble, J. Alison
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 122 - 125