Multi-objective optimization of hybrid CSP plus PV system using genetic algorithm

被引:111
|
作者
Starke, Allan R. [1 ]
Cardemil, Jose M. [2 ]
Escobar, Rodrigo [3 ]
Colle, Sergio [1 ]
机构
[1] Fed Univ Santa Catarina UFSC, Dept Mech Engn, LEPTEN Lab Energy Convers Engn & Energy Technol, Florianopolis, SC, Brazil
[2] Univ Chile, Mech Engn Dept, Beauchef 851, Santiago, Chile
[3] Pontificia Univ Catolica Chile, Ctr Desierto Atacama, Ctr Energia, Santiago, Chile
关键词
CSP plus PV hybrid; Baseload electricity; Solar energy; Multi-objective optimization; GROUND STATION MEASUREMENTS; ELECTRIC-POWER SYSTEMS; SOLAR PHOTOVOLTAICS PV; ENERGY; PLANTS; CHILE; DISPATCHABILITY; PERFORMANCE; EFFICIENCY; DESIGN;
D O I
10.1016/j.energy.2017.12.116
中图分类号
O414.1 [热力学];
学科分类号
摘要
Renewable energy has experienced a significant growth on its rate of deployment as a clean and competitive alternative for conventional power sources. The reduction on the installation costs for PV systems has converted this technology into a relevant player regarding the electricity matrix. However, a larger penetration of PV systems is restricted to the availability of affordable technological options for storage. The integration of thermal energy storage to CSP systems is, on the other hand, straightforward through technologies already available in the market. Hence, the hybridization of CSP and PV systems has the potential for reducing operational and installation costs, as well as increasing significantly the capacity factor of solar power plants. The present study describes a methodology for design and sizing such hybrid plants, by implementing a transient simulation model, coupled to an evolutionary optimization algorithm, allowing to address the trade off between costs and capacity factor. The simulation model is applied to a case study considering the characteristics of a location in northern Chile. The results are presented in terms of the Pareto Frontiers that summarizes the compromise between the economic performance and the capacity factor of the plant. It is observed that the capacity factor achieves values higher that 85%, and the LCOE is lower than those observed for stand alone CSP plants. The methodology developed constitutes a useful tool for decision makers, who can assess the performance of the hybrid plant based in a detailed transient simulation and selecting the best configuration according to market constraints or its willingness for achieving certain level of capacity factor. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:490 / 503
页数:14
相关论文
共 50 条
  • [31] Optimization of Biodiesel Production Using Multi-Objective Genetic Algorithm
    Goharimanesh, Masoud
    Lashkaripour, Ali
    Akbari, Aliakbar
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2016, 19 (02): : 117 - 124
  • [32] A genetic algorithm for unconstrained multi-objective optimization
    Long, Qiang
    Wu, Changzhi
    Huang, Tingwen
    Wang, Xiangyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2015, 22 : 1 - 14
  • [33] Genetic algorithm for multi-objective experimental optimization
    Link, Hannes
    Weuster-Botz, Dirk
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2006, 29 (5-6) : 385 - 390
  • [34] A Parallel Genetic Algorithm in Multi-objective Optimization
    Wang Zhi-xin
    Ju Gang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3497 - 3501
  • [35] Genetic algorithm for multi-objective experimental optimization
    Hannes Link
    Dirk Weuster-Botz
    Bioprocess and Biosystems Engineering, 2006, 29 : 385 - 390
  • [36] An improved genetic algorithm for multi-objective optimization
    Lin, F
    He, GM
    PDCAT 2005: Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Proceedings, 2005, : 938 - 940
  • [37] Multi-objective optimization with improved genetic algorithm
    Ishibashi, H
    Aguirre, HE
    Tanaka, K
    Sugimura, T
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3852 - 3857
  • [38] An improved genetic algorithm for multi-objective optimization
    Chen, GL
    Guo, WZ
    Tu, XZ
    Chen, HW
    Progress in Intelligence Computation & Applications, 2005, : 204 - 210
  • [39] Multi-objective Slime Mold Algorithm: A Slime Mold Approach Using Multi-objective Optimization for Parallel Hybrid Power System
    Zhu, Tianjun
    Wan, Hegao
    Ouyang, Zhuang
    Wu, Tunglung
    Liang, Jianguo
    Li, Weihao
    Li, Bin
    Han, Shiting
    SENSORS AND MATERIALS, 2022, 34 (10) : 3837 - 3856
  • [40] Mooring system design optimization using a surrogate assisted multi-objective genetic algorithm
    Pillai, Ajit C.
    Thies, Philipp R.
    Johanning, Lars
    ENGINEERING OPTIMIZATION, 2019, 51 (08) : 1370 - 1392