Variational Problems with Long-Range Interaction

被引:4
|
作者
Soave, Nicola [1 ]
Tavares, Hugo [2 ,3 ]
Terracini, Susanna [4 ]
Zilio, Alessandro [5 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Edoardo Bonardi 9, I-20133 Milan, Italy
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, CAMGSD, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Univ Lisbon, Dept Matemat, Fac Ciencias, Edificio C6,Piso 1, P-1749016 Lisbon, Portugal
[4] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[5] Univ Paris Diderot Paris 7, Lab JL Lions, CNRS, UMR 7598, 8 Pl Aurelie Nemours, F-75205 Paris 13, France
基金
欧洲研究理事会;
关键词
OPTIMAL PARTITION PROBLEMS; STRONGLY COMPETING SYSTEMS; UNIFORM HOLDER BOUNDS; ELLIPTIC-SYSTEMS; FRACTIONAL DIFFUSION; SPATIAL SEGREGATION; FREE-BOUNDARIES; EIGENVALUES; REGULARITY; EQUATIONS;
D O I
10.1007/s00205-017-1204-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of variational problems for densities that repel each other at a distance. Typical examples are given by the Dirichlet functional and the Rayleigh functional partial derivative{u(i) >0}, {u(j) > 0}) >= 1 for all(i) not equal j..minimized in the class of functions attaining some boundary conditions on a,Omega, and subjected to the constraint For these problems, we investigate the optimal regularity of the solutions, prove a free-boundary condition, and derive some preliminary results characterizing the free boundary partial derivative{Sigma(k)(i=1) u(i) > 0}.
引用
收藏
页码:743 / 772
页数:30
相关论文
共 50 条
  • [21] ON GLOBAL MINIMIZERS FOR A VARIATIONAL PROBLEM WITH LONG-RANGE INTERACTIONS
    Choksi, Rustum
    QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (03) : 517 - 537
  • [22] SCHWINGER VARIATIONAL PRINCIPLE APPLIED TO LONG-RANGE POTENTIALS
    SMITH, ME
    LUCCHESE, RR
    MCKOY, V
    PHYSICAL REVIEW A, 1984, 29 (04): : 1857 - 1864
  • [23] Variational quantum simulation of long-range interacting systems
    Lyu, Chufan
    Tang, Xiaoyu
    Li, Junning
    Xu, Xusheng
    Yung, Man-Hong
    Bayat, Abolfazl
    NEW JOURNAL OF PHYSICS, 2023, 25 (05):
  • [24] LONG-RANGE AND CURRENT PROBLEMS OF ECONOMIC SCIENCE
    FEDORENKO, N
    PROBLEMS OF ECONOMICS, 1979, 22 (08): : 3 - 20
  • [25] CONFERENCE ON PROBLEMS OF LONG-RANGE PLANNING AND FORECASTING
    RYVKIN, A
    PROBLEMS OF ECONOMICS, 1973, 16 (05): : 31 - 40
  • [26] CONCEPT OF LONG-RANGE ORDER IN PERCOLATION PROBLEMS
    KIKUCHI, R
    JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (07): : 2713 - &
  • [27] Superconductivity from a long-range repulsive interaction
    Onari, S.
    Arita, R.
    Kuroki, K.
    Aoki, H.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 559 - +
  • [28] LONG-RANGE INTERACTION BETWEEN HYDROGEN ATOMS
    BELL, RJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 87 (556P): : 594 - &
  • [29] LONG-RANGE INTERACTION BETWEEN A KDEGREES AND AN ELECTRON
    BRADEN, S
    MICKENS, RE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (04): : 525 - 525
  • [30] Long-range Coulomb interaction and Majorana fermions
    Ghazaryan, Areg
    Chakraborty, Tapash
    PHYSICAL REVIEW B, 2015, 92 (11)