3D printed fluidics with embedded analytic functionality for automated reaction optimisation

被引:31
|
作者
Capel, Andrew J. [1 ]
Wright, Andrew [1 ]
Harding, Matthew J. [1 ]
Weaver, George W. [1 ]
Li, Yuqi [1 ]
Harris, Russell A. [2 ]
Edmondson, Steve [3 ]
Goodridge, Ruth D. [4 ]
Christie, Steven D. R. [1 ]
机构
[1] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England
[2] Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[4] Univ Nottingham, Fac Engn, Nottingham NG7 2RD, England
来源
基金
英国工程与自然科学研究理事会;
关键词
3D printing; inline reaction analysis; reaction optimisation; selective laser melting; stereolithography; SELF-OPTIMIZATION; CHEMICAL-SYNTHESIS; LASER; DEPOSITION; FLOW; COMPONENTS; POWDERS;
D O I
10.3762/bjoc.13.14
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro-and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereo-lithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [1] DNA Assembly in 3D Printed Fluidics
    Patrick, William G.
    Nielsen, Alec A. K.
    Keating, Steven J.
    Levy, Taylor J.
    Wang, Wei
    Rivera, Jaime J.
    Mondragn-Palomino, Octavio
    Carr, Peter A.
    Voigt, Christopher A.
    Oxman, Neri
    Kong, David S.
    [J]. PLOS ONE, 2015, 10 (12):
  • [2] An open source toolkit for 3D printed fluidics
    Adam J. N. Price
    Andrew J. Capel
    Robert J. Lee
    Patrick Pradel
    Steven D. R. Christie
    [J]. Journal of Flow Chemistry, 2021, 11 : 37 - 51
  • [3] An open source toolkit for 3D printed fluidics
    Price, Adam J. N.
    Capel, Andrew J.
    Lee, Robert J.
    Pradel, Patrick
    Christie, Steven D. R.
    [J]. JOURNAL OF FLOW CHEMISTRY, 2021, 11 (01) : 37 - 51
  • [4] 3D Printed Embedded Metamaterials
    Zhang, Kun Peng
    Liao, Yan Fei
    Qiu, Bin
    Zheng, Yue Kun
    Yu, Ling Ke
    He, Gong Han
    Chen, Qin Nan
    Sun, Dao Heng
    [J]. SMALL, 2021, 17 (50)
  • [5] Automated strength monitoring of 3D printed structures via embedded sensors
    Banijamali, Kasra
    Vosoughi, Payam
    Arce, Gabriel
    Noorvand, Hassan
    Lamendola, Joseph
    Hassan, Marwa
    Kazemian, Ali
    [J]. AUTOMATION IN CONSTRUCTION, 2024, 166
  • [6] Hierarchical Composites Patterned via 3D Printed Cellular Fluidics
    Gemeda, Hawi B.
    Dudukovic, Nikola A.
    Zhu, Cheng
    Guell Izard, Anna
    Gongora, Aldair E.
    Deotte, Joshua R.
    Davis, Johnathan T.
    Duoss, Eric B.
    Fong, Erika J.
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [7] Sliding Functionality for 3D Printed Lightweight Components
    Panaitescu, Ileana
    Ripoll, Manel Rodríguez
    Katsich, Christian
    Hubmann, Reinhard
    Badisch, Ewald
    [J]. BHM Berg- und Huttenmannische Monatshefte, 2021, 166 (05): : 250 - 255
  • [8] Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics
    Tsuda, Soichiro
    Jaffery, Hussain
    Doran, David
    Hezwani, Mohammad
    Robbins, Phillip J.
    Yoshida, Mari
    Cronin, Leroy
    [J]. PLOS ONE, 2015, 10 (11):
  • [9] 3D Printed Bioelectronic Platform with Embedded Electronics
    Agarwala, Shweta
    Lee, Jia Min
    Yeong, Wai Yee
    Layani, Michael
    Magdassi, Shlomo
    [J]. MRS ADVANCES, 2018, 3 (50) : 3011 - 3017
  • [10] 3D Printed Bioelectronic Platform with Embedded Electronics
    Shweta Agarwala
    Jia Min Lee
    Wai Yee Yeong
    Michael Layani
    Shlomo Magdassi
    [J]. MRS Advances, 2018, 3 (50) : 3011 - 3017