Planck 2015 results XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

被引:92
|
作者
Ade, P. A. R. [84 ]
Aghanim, N. [58 ]
Arnaud, M. [72 ]
Aumont, J. [58 ]
Baccigalupi, C. [83 ]
Banday, A. J. [9 ,91 ]
Barreiro, R. B. [63 ]
Bartlett, J. G. [1 ,65 ]
Bartolo, N. [27 ,64 ]
Battaner, E. [92 ,93 ]
Benabed, K. [59 ,90 ]
Benoit-Levy, A. [21 ,59 ,90 ]
Bernard, J. -P. [9 ,91 ]
Bersanelli, M. [30 ,48 ]
Bielewicz, P. [9 ,80 ,83 ]
Bock, J. J. [10 ,65 ]
Bonaldi, A. [66 ]
Bonavera, L. [63 ]
Bond, J. R. [8 ]
Borrill, J. [12 ,87 ]
Bouchet, F. R. [59 ,85 ]
Burigana, C. [28 ,44 ,47 ]
Butler, R. C. [47 ]
Calabrese, E. [89 ]
Catalano, A. [71 ,73 ]
Chamballu, A. [13 ,58 ,72 ]
Chiang, H. C. [6 ,24 ]
Christensen, P. R. [33 ,81 ]
Churazov, E. [78 ,86 ]
Clements, D. L. [55 ]
Colombo, L. P. L. [20 ,65 ]
Combet, C. [73 ]
Comis, B. [73 ]
Couchot, F. [70 ]
Coulais, A. [71 ]
Crill, B. P. [10 ,65 ]
Curto, A. [5 ,63 ,68 ]
Cuttaia, F. [47 ]
Danese, L. [83 ]
Davies, R. D. [66 ]
Davis, R. J. [66 ]
de Bernardis, P. [29 ]
de Rosa, A. [47 ]
de Zotti, G. [44 ,83 ]
Delabrouille, J. [1 ]
Dickinson, C. [66 ]
Diego, J. M. [63 ]
Dole, H. [57 ,58 ]
Donzelli, S. [48 ]
Dore, O. [10 ,65 ]
机构
[1] Univ Paris Diderot, APC AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[2] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa
[3] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy
[4] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France
[5] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[6] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
[7] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile
[8] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada
[9] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France
[10] CALTECH, Pasadena, CA 91125 USA
[11] CEFCA, Plaza San Juan,1 Planta 2, Teruel 44001, Spain
[12] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA
[13] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France
[14] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark
[15] Univ Geneva, Dept Phys Theor, 24 Quai Ansermet, CH-1211 Geneva 4, Switzerland
[16] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain
[17] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain
[18] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands
[19] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada
[20] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA
[21] UCL, Dept Phys & Astron, London WC1E 6BT, England
[22] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA
[23] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland
[24] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[25] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[26] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA
[27] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[28] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy
[29] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy
[30] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[31] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy
[32] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[33] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark
[34] European Southern Observ ESO Vitacura, Alonso de Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile
[35] European Space Agcy ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain
[36] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands
[37] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy
[38] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[39] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany
[40] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[41] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA
[42] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland
[43] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy
[44] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy
[45] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy
[46] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy
[47] IASF Bologna, INAF, Via Gobetti 101, I-40127 Bologna, Italy
[48] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy
[49] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[50] Univ Roma Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy
基金
美国国家科学基金会;
关键词
galaxies: clusters: general; infrared: galaxies; large-scale structure of Universe; methods: data analysis; ANGULAR POWER SPECTRUM; GALAXY CLUSTER; STAR-FORMATION; SUBMILLIMETER GALAXIES; COSMOLOGY; CONSTRAINTS; ANISOTROPIES; MODEL; PROFILES; CATALOG;
D O I
10.1051/0004-6361/201527418
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c(500) = 1.00(-0.15)(+0.18). This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 sigma; (ii) 3 sigma; and (iii) 4 sigma. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is A(tSZ-CIB) = 1.2 +/- 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
引用
收藏
页数:17
相关论文
共 37 条
  • [31] Detection of warm and diffuse baryons in large scale structure from the cross correlation of gravitational lensing and the thermal Sunyaev-Zeldovich effect
    Van Waerbeke, Ludovic
    Hinshaw, Gary
    Murray, Norman
    PHYSICAL REVIEW D, 2014, 89 (02)
  • [32] Simple halo model formalism for the cosmic infrared background and its correlation with the thermal Sunyaev-Zel'dovich effect
    Maniyar, A.
    Bethermin, M.
    Lagache, G.
    ASTRONOMY & ASTROPHYSICS, 2021, 645
  • [33] Planck intermediate results V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect (vol 550, A131, 2013)
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Atrio-Barandela, F.
    Aumont, J.
    Baccigalupi, C.
    Balbi, A.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Bernard, J-P.
    Bersanelli, M.
    Bhatia, R.
    Bikmaev, I.
    Bobin, J.
    Boehringer, H.
    Bonaldi, A.
    Bond, J. R.
    Borgani, S.
    Borrill, J.
    Bouchet, F. R.
    Bourdin, H.
    Brown, M. L.
    Burenin, R.
    Burigana, C.
    Cabella, P.
    Cardoso, J. -F.
    Carvalho, P.
    Castex, G.
    Catalano, A.
    Cayon, L.
    Chamballu, A.
    Chiang, L. -Y
    Chon, G.
    Christensen, P. R.
    Churazov, E.
    Clements, D. L.
    Colafrancesco, S.
    Colombi, S.
    Colombo, L. P. L.
    Comis, B.
    Coulais, A.
    Crill, B. P.
    Cuttaia, F.
    Da Silva, A.
    Dahle, H.
    ASTRONOMY & ASTROPHYSICS, 2013, 558
  • [34] Using Sunyaev-Zeldovich infrared experiment (SuZIE) arcminute-scale cosmic microwave background anisotropy data to probe open and flat Lambda cold dark matter cosmogonies
    Ganga, K
    Ratra, B
    Church, SE
    Sugiyama, N
    Ade, PAR
    Holzapfel, WL
    Mauskopf, PD
    Lange, AE
    ASTROPHYSICAL JOURNAL, 1997, 484 (02): : 517 - 522
  • [35] Search for Galaxy Cluster Candidates in the Cosmic Microwave Background Maps of the Planck Space Mission Using a Convolutional Neural Network Based on the Method of Tracing the Sunyaev–Zeldovich Effect
    O. V. Verkhodanov
    A. P. Topchieva
    A. D. Oronovskaya
    S. A. Bazrov
    D. A. Shorin
    Astrophysical Bulletin, 2021, 76 : 123 - 131
  • [36] Impact of radio sources and cosmic infrared background on thermal Sunyaev-Zel'dovich - gravitational lensing cross-correlation
    Shirasaki, Masato
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (01) : 342 - 351
  • [37] Cross-correlation of the extragalactic gamma-ray background with the thermal Sunyaev-Zel'dovich effect in the cosmic microwave background
    Shirasaki, Masato
    Macias, Oscar
    Ando, Shin'ichiro
    Horiuchi, Shunsaku
    Yoshida, Naoki
    PHYSICAL REVIEW D, 2020, 101 (10)