Performance Scaling in Magnetized Liner Inertial Fusion Experiments

被引:82
|
作者
Gomez, M. R. [1 ]
Slutz, S. A. [1 ]
Jennings, C. A. [1 ]
Ampleford, D. J. [1 ]
Weis, M. R. [1 ]
Myers, C. E. [1 ]
Yager-Elorriaga, D. A. [1 ]
Hahn, K. D. [2 ]
Hansen, S. B. [1 ]
Harding, E. C. [1 ]
Harvey-Thompson, A. J. [1 ]
Lamppa, D. C. [1 ]
Mangan, M. [1 ]
Knapp, P. F. [1 ]
Awe, T. J. [1 ]
Chandler, G. A. [1 ]
Cooper, G. W. [1 ,3 ]
Fein, J. R. [1 ]
Geissel, M. [1 ]
Glinsky, M. E. [1 ]
Lewis, W. E. [1 ]
Ruiz, C. L. [1 ]
Ruiz, D. E. [1 ]
Savage, M. E. [1 ]
Schmit, P. F. [1 ]
Smith, I. C. [1 ]
Styron, J. D. [3 ]
Porter, J. L. [1 ]
Jones, B. [1 ]
Mattsson, T. R. [1 ]
Peterson, K. J. [1 ]
Rochau, G. A. [1 ]
Sinars, D. B. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ New Mexico, Albuquerque, NM 87131 USA
关键词
PHYSICS BASIS; FUEL; IGNITION;
D O I
10.1103/PhysRevLett.125.155002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1 x 10(13) (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Laser-driven magnetized liner inertial fusion on OMEGA
    Barnak, D. H.
    Davies, J. R.
    Betti, R.
    Bonino, M. J.
    Campbell, E. M.
    Glebov, V. Yu.
    Harding, D. R.
    Knauer, J. P.
    Regan, S. P.
    Sefkow, A. B.
    Harvey-Thompson, A. J.
    Peterson, K. J.
    Sinars, D. B.
    Slutz, S. A.
    Weis, M. R.
    Chang, P-Y
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [22] Axial magnetic field injection in magnetized liner inertial fusion
    Gourdain, P. -A.
    Adams, M. B.
    Davies, J. R.
    Seyler, C. E.
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [23] A semi-analytic model of magnetized liner inertial fusion
    McBride, Ryan D.
    Slutz, Stephen A.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [24] Novel beryllium-scintillator, neutron-fluence detector for magnetized liner inertial fusion experiments
    Ruiz, C. L.
    Styron, J. D.
    Fehl, D. L.
    Hahn, K. D.
    McWatters, B.
    Mangan, M. A.
    Cooper, G. W.
    Vaughan, J. D.
    Chandler, G. A.
    Jones, B. M.
    Torres, J. A.
    Stutz, S. A.
    Ampleford, D. J.
    Gomez, M. R.
    Harding, E.
    Harvey-Thompson, A. J.
    Knapp, P. F.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (04):
  • [25] Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
    Gomez, M. R.
    Slutz, S. A.
    Sefkow, A. B.
    Sinars, D. B.
    Hahn, K. D.
    Hansen, S. B.
    Harding, E. C.
    Knapp, P. F.
    Schmit, P. F.
    Jennings, C. A.
    Awe, T. J.
    Geissel, M.
    Rovang, D. C.
    Chandler, G. A.
    Cooper, G. W.
    Cuneo, M. E.
    Harvey-Thompson, A. J.
    Herrmann, M. C.
    Hess, M. H.
    Johns, O.
    Lamppa, D. C.
    Martin, M. R.
    McBride, R. D.
    Peterson, K. J.
    Porter, J. L.
    Robertson, G. K.
    Rochau, G. A.
    Ruiz, C. L.
    Savage, M. E.
    Smith, I. C.
    Stygar, W. A.
    Vesey, R. A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [26] Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion
    Harvey-Thompson, A. J.
    Sefkow, A. B.
    Nagayama, T. N.
    Wei, M. S.
    Campbell, E. M.
    Fiksel, G.
    Chang, P. -Y.
    Davies, J. R.
    Barnak, D. H.
    Glebov, V. Y.
    Fitzsimmons, P.
    Fooks, J.
    Blue, B. E.
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [27] Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
    Geissel, Matthias
    Awe, T. J.
    Bliss, D. E.
    Campbell, M. E.
    Gomez, M. R.
    Harding, E.
    Harvey-Thompson, A. J.
    Hansen, S. B.
    Jennings, C.
    Kimmel, M. W.
    Knapp, P.
    Lewis, S. M.
    McBride, R. D.
    Peterson, K.
    Schollmeier, M.
    Scoglietti, D. J.
    Sefkow, A. B.
    Shores, J. E.
    Sinars, D. B.
    Slutz, S. A.
    Smith, I. C.
    Speas, C. S.
    Vesey, R. A.
    Porter, J. L.
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS XV, 2016, 9731
  • [28] One-dimensional integrated simulations of magnetized liner inertial fusion
    Zhao Hai-Long
    Xiao Bo
    Wang Gang-Hua
    Wang Qiang
    Zhang Zheng-Wei
    Sun Qi-Zhi
    Deng Jian-Jun
    ACTA PHYSICA SINICA, 2020, 69 (03)
  • [29] Electrothermal effects on high-gain magnetized liner inertial fusion
    Chen, Shijia
    Yang, Xiaohu
    Wu, Fuyuan
    Ma, Yanyun
    Zhang, Guobo
    Yuan, Yun
    Cui, Ye
    Ramis, Rafael
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (11)
  • [30] Assessing Stagnation Conditions and Identifying Trends in Magnetized Liner Inertial Fusion
    Gomez, Matthew R.
    Slutz, Stephen A.
    Knapp, Patrick F.
    Hahn, Kelly D.
    Weis, Matthew R.
    Harding, Eric C.
    Geissel, Matthias
    Fein, Jeffrey R.
    Glinsky, Michael E.
    Hansen, Stephanie B.
    Harvey-Thompson, Adam J.
    Jennings, Christopher A.
    Smith, Ian C.
    Woodbury, Daniel
    Ampleford, David J.
    Awe, Thomas J.
    Chandler, Gordon A.
    Hess, Mark H.
    Lamppa, Derek C.
    Myers, Clayton E.
    Ruiz, Carlos L.
    Sefkow, Adam B.
    Schwarz, Jens
    Yager-Elorriaga, David A.
    Jones, Brent
    Porter, John L.
    Peterson, Kyle J.
    McBride, Ryan D.
    Rochau, Gregory A.
    Sinars, Daniel B.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (05) : 2081 - 2101