PARMAP: A Pan-Genome-Based Computational Framework for Predicting Antimicrobial Resistance

被引:13
|
作者
Li, Xuefei [1 ]
Lin, Jingxia [1 ]
Hu, Yongfei [1 ]
Zhou, Jiajian [1 ]
机构
[1] Southern Med Univ, Dermatol Hosp, Guangzhou, Peoples R China
关键词
antimicrobial resistance (AMR); pan-genome; machine learning (ML); Neisseria gonorrhoeae; antibiotic resistance genes; AMR prediction; NEISSERIA-GONORRHOEAE; PROTEIN; SPREAD; TOOL;
D O I
10.3389/fmicb.2020.578795
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Antimicrobial resistance (AMR) has emerged as one of the most urgent global threats to public health. Accurate detection of AMR phenotypes is critical for reducing the spread of AMR strains. Here, we developed PARMAP (Prediction of Antimicrobial Resistance by MAPping genetic alterations in pan-genome) to predict AMR phenotypes and to identify AMR-associated genetic alterations based on the pan-genome of bacteria by utilizing machine learning algorithms. When we applied PARMAP to 1,597 Neisseria gonorrhoeae strains, it successfully predicted their AMR phenotypes based on a pan-genome analysis. Furthermore, it identified 328 genetic alterations in 23 known AMR genes and discovered many new AMR-associated genetic alterations in ciprofloxacin-resistant N. gonorrhoeae, and it clearly indicated the genetic heterogeneity of AMR genes in different subtypes of resistant N. gonorrhoeae. Additionally, PARMAP performed well in predicting the AMR phenotypes of Mycobacterium tuberculosis and Escherichia coli, indicating the robustness of the PARMAP framework. In conclusion, PARMAP not only precisely predicts the AMR of a population of strains of a given species but also uses whole-genome sequencing data to prioritize candidate AMR-associated genetic alterations based on their likelihood of contributing to AMR. Thus, we believe that PARMAP will accelerate investigations into AMR mechanisms in other human pathogens.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Establishing a national reference laboratory for antimicrobial resistance using a whole- genome sequencing framework: Nigeria's experience
    Okeke, Iruka N.
    Aboderin, Aaron O.
    Egwuenu, Abiodun
    Underwood, Anthony
    Afolayan, Ayorinde O.
    Kekre, Mihir
    Oaikhena, Anderson O.
    Odih, Erkison Ewomazino
    Omotayo, Hamzat T.
    Dada-Adegbola, Hannah
    Ogunleye, Veronica O.
    Ikhimiukor, Odion O.
    Aanensen, David M.
    Ihekweazu, Chikwe
    MICROBIOLOGY-SGM, 2022, 168 (08):
  • [32] Genome-based epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in Spain: A prospective multicentre study
    Salmeron, P.
    Buckley, C.
    Arando, M.
    Alcoceba, E.
    Romero, B.
    Clavo, P.
    Whiley, D.
    Serra-Pladevall, J.
    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2023, 37 (12) : 2575 - 2582
  • [33] A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption
    Arepyeva, M. A.
    Kolbin, A. S.
    Sidorenko, S. V.
    Lawson, R.
    Kurylev, A. A.
    Balykina, Yu E.
    Mukhina, N. V.
    Spiridonova, A. A.
    JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 2017, 8 : 148 - 156
  • [34] Systematic Evaluation of Whole Genome Sequence-Based Predictions of Salmonella Serotype and Antimicrobial Resistance
    Cooper, Ashley L.
    Low, Andrew J.
    Koziol, Adam G.
    Thomas, Matthew C.
    Leclair, Daniel
    Tamber, Sandeep
    Wong, Alex
    Blais, Burton W.
    Carrillo, Catherine D.
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [35] Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction
    Majek, Peter
    Lueftinger, Lukas
    Beisken, Stephan
    Rattei, Thomas
    Materna, Arne
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [36] Genome-based assessment of antimicrobial resistance reveals the lineage specificity of resistance and resistance gene profiles in Riemerella anatipestifer from China
    Yang, Zhishuang
    Wang, Mingshu
    Jia, Renyong
    Chen, Shun
    Liu, Mafeng
    Zhao, Xinxin
    Yang, Qiao
    Wu, Ying
    Zhang, Shaqiu
    Huang, Juan
    Ou, Xumin
    Mao, Sai
    Gao, Qun
    Sun, Di
    Tian, Bin
    He, Yu
    Wu, Zhen
    Zhu, Dekang
    Cheng, Anchun
    MICROBIOLOGY SPECTRUM, 2024, 12 (02):
  • [37] An experimentally validated dislocation density based computational framework for predicting microstructural evolution in cold spray process
    Msolli, Sabeur
    Zhang, Zhi-Qian
    Seng, Debbie Hwee Leng
    Zhang, Zheng
    Guo, Junyan
    Reddy, C. D.
    Sridhar, N.
    Pan, Jisheng
    Tan, Boon Hee
    Loi, Qizhong
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 225
  • [38] Pan-PCR, a Computational Method for Designing Bacterium-Typing Assays Based on Whole-Genome Sequence Data
    Yang, Joy Y.
    Brooks, Shelise
    Meyer, Jennifer A.
    Blakesley, Robert R.
    Zelazny, Adrian M.
    Segre, Julia A.
    Snitkin, Evan S.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (03) : 752 - 758
  • [39] Web-based prediction of antimicrobial resistance in enterococcal clinical isolates by whole-genome sequencing
    Malo Penven
    Asma Zouari
    Sophie Nogues
    Anaïs Collet
    Maxime Lecourt
    Aurélien Birer
    François Guerin
    Gabriel Auger
    Vincent Cattoir
    European Journal of Clinical Microbiology & Infectious Diseases, 2023, 42 : 67 - 76
  • [40] Web-based prediction of antimicrobial resistance in enterococcal clinical isolates by whole-genome sequencing
    Penven, Malo
    Zouari, Asma
    Nogues, Sophie
    Collet, Anais
    Lecourt, Maxime
    Birer, Aurelien
    Guerin, Francois
    Auger, Gabriel
    Cattoir, Vincent
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2023, 42 (01) : 67 - 76