CONSISTENT PARTIAL LEAST SQUARES PATH MODELING

被引:1330
|
作者
Dijkstra, Theo K. [1 ]
Henseler, Jorg [2 ,3 ]
机构
[1] Univ Groningen, Fac Econ & Business, Nettelbosje 2, NL-9747 AE Groningen, Netherlands
[2] Univ Twente, Fac Engn Technol, NL-7522 NB Enschede, Netherlands
[3] Univ Nova Lisboa, NOVA IMS, P-1070312 Lisbon, Portugal
关键词
PLS; consistent partial least squares; SEM; variance-based structural equation modeling; Monte Carlo simulation; STRUCTURAL EQUATION MODELS; MAXIMUM-LIKELIHOOD; PLS-SEM; RIGDONS RETHINKING; LATENT-VARIABLES; MEDIATING ROLE; SYSTEMS; REGRESSION; PRAISE;
D O I
10.25300/MISQ/2015/39.2.02
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper resumes the discussion in information systems research on the use of partial least squares (PLS) path modeling and shows that the inconsistency of PLS path coefficient estimates in the case of reflective measurement can have adverse consequences for hypothesis testing. To remedy this, the study introduces a vital extension of PLS: consistent PLS (PLSc). PLSc provides a correction for estimates when PLS is applied to reflective constructs: The path coefficients, inter-construct correlations, and indicator loadings become consistent. The outcome of a Monte Carlo simulation reveals that the bias of PLSc parameter estimates is comparable to that of covariance-based structural equation modeling. Moreover, the outcome shows that PLSc has advantages when using non-normally distributed data. We discuss the implications for IS research and provide guidelines for choosing among structural equation modeling techniques.
引用
下载
收藏
页码:297 / +
页数:25
相关论文
共 50 条
  • [31] A Quadratic Fuzzy Regression Approach for Handling Uncertainties in Partial Least Squares Path Modeling
    Seman, L. O.
    Gomes, G.
    Hausmann, R.
    Bezerra, E. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (01) : 192 - 201
  • [32] Assessing the overall fit of composite models estimated by partial least squares path modeling
    Schuberth, Florian
    Rademaker, Manuel E.
    Henseler, Jorg
    EUROPEAN JOURNAL OF MARKETING, 2023, 57 (06) : 1678 - 1702
  • [33] Parkinson Disease Propagation Using MRI Biomarkers and Partial Least Squares Path Modeling
    Pyatigorskaya, Nadya
    Yahia-Cherif, Lydia
    Valabregue, Romain
    Gaurav, Rahul
    Gargouri, Fatma
    Ewenczyk, Claire
    Gallea, Cecile
    Fernandez-Vidal, Sara
    Arnulf, Isabelle
    Vidailhet, Marie
    Lehericy, Stephane
    NEUROLOGY, 2021, 96 (03) : E460 - E471
  • [34] Assessing statistical differences between parameters estimates in Partial Least Squares path modeling
    Macario Rodríguez-Entrena
    Florian Schuberth
    Carsten Gelhard
    Quality & Quantity, 2018, 52 : 57 - 69
  • [35] Multidimensional model of apathy in older adults using partial least squares—path modeling
    Stéphane Raffard
    Catherine Bortolon
    Marianna Burca
    Marie-Christine Gely-Nargeot
    Delphine Capdevielle
    AGE, 2016, 38
  • [36] Generalized properties for Hanafi–Wold’s procedure in partial least squares path modeling
    Mohamed Hanafi
    Pasquale Dolce
    Zouhair El Hadri
    Computational Statistics, 2021, 36 : 603 - 614
  • [37] CONSISTENT PARTIAL LEAST SQUARES FOR NONLINEAR STRUCTURAL EQUATION MODELS
    Dijkstra, Theo K.
    Schermelleh-Engel, Karin
    PSYCHOMETRIKA, 2014, 79 (04) : 585 - 604
  • [38] A CRITICAL LOOK AT PARTIAL LEAST SQUARES MODELING
    Marcoulides, George A.
    Chin, Wynne W.
    Saunders, Carol
    MIS QUARTERLY, 2009, 33 (01) : 171 - 175
  • [39] Modeling and partial least squares approaches in OODA
    Isabel Sanchez-Rodriguez, Maria
    Caridad, Jose M.
    BIOMETRICAL JOURNAL, 2014, 56 (05) : 771 - 773
  • [40] Consistent Partial Least Squares for Nonlinear Structural Equation Models
    Dijkstra T.K.
    Schermelleh-Engel K.
    Psychometrika, 2014, 79 (4) : 585 - 604