Strategies involving the local defect correction multi-level refinement method for solving three-dimensional linear elastic problems

被引:12
|
作者
Barbie, L. [1 ,2 ]
Ramiere, I. [1 ]
Lebon, F. [2 ]
机构
[1] CEA, DEN, DEC, SESC, F-13108 St Paul Les Durance, France
[2] Aix Marseille Univ, Cent Marseille, LMA, CNRS,UPR 7051, F-13402 Marseille 20, France
关键词
Local defect correction method; Multi-grid process; Hierarchical local sub-grids; Structured non-data-fitted meshes; A posteriori error estimation; Linear solid mechanics; FINITE-ELEMENT-METHOD; SUPERCONVERGENT PATCH RECOVERY; POSTERIORI ERROR ESTIMATION; MESH REFINEMENT; CONVERGENCE ANALYSIS; ELLIPTIC PROBLEMS; P-VERSION; APPROXIMATION; ESTIMATORS; INTERFACE;
D O I
10.1016/j.compstruc.2013.10.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this study was to assess the efficiency of the local defect correction multi-grid method (Hackbusch, 1984 [31]) on solid mechanics test cases showing local singularities and derived from an industrial context. The levels of local refinement are automatically obtained recursively, using Zienkiewicz and Zhu's a posteriori error estimator. Choices of the prolongation operator, the refinement ratio and criterion are discussed in order to give the most satisfactory performances. Comparisons with an h-adaptive refinement method show the efficiency of the tool presented here, in terms of its accuracy and the memory space and processor time required. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条