Fractional Poincare and logarithmic Sobolev inequalities for measure spaces

被引:8
|
作者
Gressman, Philip T. [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
Fractional Poincare inequalities; Logarithmic Sobolev inequalities; Metric-measure spaces; METRIC-MEASURE-SPACES; CONVERGENCE; ENTROPIES; GEOMETRY; EQUATION;
D O I
10.1016/j.jfa.2013.05.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove generalizations of the Poincare and logarithmic Sobolev inequalities corresponding to the case of fractional derivatives in measure spaces with only a minimal amount of geometric structure. The class of such spaces includes (but is not limited to) spaces of homogeneous type with doubling measures. Several examples and applications are given, including Poincare inequalities for graph Laplacians, fractional Poincare inequalities of Mouhot, Russ, and Sire (2011) [17], and implications for recent work of the author and R.M. Strain on the Boltzmann collision operator (Gressman and Strain, 2010, 2011, 2011 [9-11]). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:867 / 889
页数:23
相关论文
共 50 条
  • [21] Revised logarithmic Sobolev inequalities of fractional order
    Chatzakou, Marianna
    Ruzhansky, Michael
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 197
  • [22] FROM POINCARE TO LOGARITHMIC SOBOLEV INEQUALITIES: A GRADIENT FLOW APPROACH
    Dolbeault, Jean
    Nazaret, Bruno
    Savare, Giuseppe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3186 - 3216
  • [23] On Poincare and Logarithmic Sobolev Inequalities for a Class of Singular Gibbs Measures
    Chafai, Djalil
    Lehec, Joseph
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 219 - 246
  • [24] Logarithmic Sobolev inequalities in discrete product spaces
    Marton, Katalin
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (06): : 919 - 935
  • [25] Discrete logarithmic Sobolev inequalities in Banach spaces
    Cordero-Erausquin, Dario
    Eskenazis, Alexandros
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (02):
  • [26] MOMENT ESTIMATES DERIVED FROM POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES
    Aida, S.
    Stroock, D.
    MATHEMATICAL RESEARCH LETTERS, 1994, 1 (01) : 75 - 86
  • [27] Fractional Sobolev-Poincare Inequalities in Irregular Domains
    Guo, Chang-Yu
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (03) : 839 - 856
  • [28] On logarithmic Sobolev inequalities for higher order fractional derivatives
    Cotsiolis, A
    Tavoularis, NK
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (03) : 205 - 208
  • [29] UNIFORM POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES FOR MEAN FIELD PARTICLE SYSTEMS
    Guillin, Arnaud
    Liu, Wei
    Wu, Liming
    Zhang, Chaoen
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 1590 - 1614
  • [30] A remark on Poincare inequalities on metric measure spaces
    Keith, S
    Rajala, K
    MATHEMATICA SCANDINAVICA, 2004, 95 (02) : 299 - 304