Fractional Poincare and logarithmic Sobolev inequalities for measure spaces

被引:8
|
作者
Gressman, Philip T. [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
Fractional Poincare inequalities; Logarithmic Sobolev inequalities; Metric-measure spaces; METRIC-MEASURE-SPACES; CONVERGENCE; ENTROPIES; GEOMETRY; EQUATION;
D O I
10.1016/j.jfa.2013.05.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove generalizations of the Poincare and logarithmic Sobolev inequalities corresponding to the case of fractional derivatives in measure spaces with only a minimal amount of geometric structure. The class of such spaces includes (but is not limited to) spaces of homogeneous type with doubling measures. Several examples and applications are given, including Poincare inequalities for graph Laplacians, fractional Poincare inequalities of Mouhot, Russ, and Sire (2011) [17], and implications for recent work of the author and R.M. Strain on the Boltzmann collision operator (Gressman and Strain, 2010, 2011, 2011 [9-11]). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:867 / 889
页数:23
相关论文
共 50 条
  • [1] IMPROVED POINCARE INEQUALITIES IN FRACTIONAL SOBOLEV SPACES
    Drelichman, Irene
    Duran, Ricardo G.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 885 - 903
  • [2] Hardy and Poincare inequalities in fractional Orlicz-Sobolev spaces
    Bal, Kaushik
    Mohanta, Kaushik
    Roy, Prosenjit
    Sk, Firoj
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216
  • [3] Poincare inequalities and Sobolev spaces
    MacManus, P
    PUBLICACIONS MATEMATIQUES, 2002, : 181 - 197
  • [4] New Sobolev spaces via generalized Poincare inequalities on metric measure spaces
    Yan, Lixin
    Yang, Dachun
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (01) : 133 - 159
  • [5] From concentration to logarithmic Sobolev and Poincare inequalities
    Gozlan, Nathael
    Roberto, Cyril
    Samson, Paul-Marie
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (05) : 1491 - 1522
  • [6] Interpolation between logarithmic Sobolev and Poincare inequalities
    Arnold, Anton
    Bartier, Jean-Philippe
    Dolbeault, Jean
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (04) : 971 - 979
  • [7] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    王万义
    孙炯
    郑志明
    Applied Mathematics and Mechanics(English Edition), 2006, (01) : 125 - 132
  • [8] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    LACAZE, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (09): : 411 - 414
  • [9] Poincare inequalities in weighted Sobolev spaces
    Wang, WY
    Sun, J
    Zhi, ZM
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (01) : 125 - 132
  • [10] Concentration of measure and logarithmic Sobolev inequalities
    Ledoux, M
    SEMINAIRE DE PROBABILITES XXXIII, 1999, 1709 : 120 - 216