On computational complexity of Siegel Julia sets

被引:10
|
作者
Binder, I [1 ]
Braverman, M
Yampolsky, M
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
关键词
Neural Network; Statistical Physic; Complex System; Computational Complexity; Nonlinear Dynamics;
D O I
10.1007/s00220-006-1546-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been previously shown by two of the authors that some polynomial Julia sets are algorithmically impossible to draw with arbitrary magnification. On the other hand, for a large class of examples the problem of drawing a picture has polynomial complexity. In this paper we demonstrate the existence of computable quadratic Julia sets whose computational complexity is arbitrarily high.
引用
收藏
页码:317 / 334
页数:18
相关论文
共 50 条
  • [31] Continuity of Julia sets
    Wu, SJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (03): : 281 - 285
  • [32] Normality and Julia sets
    Wang, YF
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 583 - 589
  • [33] A PROBLEM ON JULIA SETS
    BAKER, IN
    EREMENKO, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1987, 12 (02): : 229 - 236
  • [34] Consensus of Julia Sets
    Sun, Weihua
    Liu, Shutang
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [35] Smooth Julia Sets
    Sekovanov V.S.
    Journal of Mathematical Sciences, 2020, 245 (2) : 202 - 216
  • [36] SYMMETRIES OF JULIA SETS
    BEARDON, AF
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 576 - 582
  • [37] JULIA SETS IN THE QUATERNIONS
    NORTON, A
    COMPUTERS & GRAPHICS, 1989, 13 (02) : 267 - 278
  • [38] Continuity of Julia sets
    伍胜健
    Science China Mathematics, 1999, (03) : 281 - 285
  • [39] HYPERCHAOS AND JULIA SETS
    ROSSLER, OE
    KAHLERT, C
    PARISI, J
    PEINKE, J
    ROHRICHT, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1986, 41 (06): : 819 - 822
  • [40] PERCOLATION AND JULIA SETS
    AHMED, E
    ABDUSALAM, HA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (02) : 287 - 292