On computational complexity of Siegel Julia sets

被引:10
|
作者
Binder, I [1 ]
Braverman, M
Yampolsky, M
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
关键词
Neural Network; Statistical Physic; Complex System; Computational Complexity; Nonlinear Dynamics;
D O I
10.1007/s00220-006-1546-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been previously shown by two of the authors that some polynomial Julia sets are algorithmically impossible to draw with arbitrary magnification. On the other hand, for a large class of examples the problem of drawing a picture has polynomial complexity. In this paper we demonstrate the existence of computable quadratic Julia sets whose computational complexity is arbitrarily high.
引用
收藏
页码:317 / 334
页数:18
相关论文
共 50 条
  • [1] On Computational Complexity of Siegel Julia Sets
    I. Binder
    M. Braverman
    M. Yampolsky
    Communications in Mathematical Physics, 2006, 264 : 317 - 334
  • [2] On computational complexity of Cremer Julia sets
    Dudko, Artem
    Yampolsky, Michael
    FUNDAMENTA MATHEMATICAE, 2021, 252 (03) : 343 - 353
  • [3] Topological complexity of Julia sets
    Jianyong Qiao
    Science in China Series A: Mathematics, 1997, 40 : 1158 - 1165
  • [4] Topological complexity of Julia sets
    Morningside Center of Mathematics, Chinese Academy of Science, Beijing 100080, China
    Sci China Ser A, 11 (1158-1165):
  • [5] Topological complexity of Julia sets
    Qiao, JY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (11): : 1158 - 1165
  • [6] Topological complexity of Julia sets
    乔建永
    Science China Mathematics, 1997, (11) : 1158 - 1165
  • [7] Computability and complexity of Julia sets: a review
    Hiratsuka, Kota
    Sato, Yuzuru
    Arai, Zin
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2014, 5 (04): : 410 - 423
  • [8] Visual Explanation of the Complexity in Julia Sets
    Schrijvers, Okke
    van Wijk, Jarke J.
    COMPUTER GRAPHICS FORUM, 2013, 32 (03) : 431 - 440
  • [9] On the Complexity of the Julia Sets of Rational Functions
    乔建永
    数学进展, 1996, (01) : 89 - 90
  • [10] Self-similarity of Siegel disks and Hausdorff dimension of Julia sets
    McMullen, CT
    ACTA MATHEMATICA, 1998, 180 (02) : 247 - 292