An End-to-End Load Balancer Based on Deep Learning for Vehicular Network Traffic Control

被引:60
|
作者
Li, Jinglin [1 ]
Luo, Guiyang [1 ]
Cheng, Nan [2 ]
Yuan, Quan [1 ]
Wu, Zhiheng [1 ]
Gao, Shang [1 ]
Liu, Zhihan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Univ Waterloo, Elect & Comp Engn Dept, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Convolutional neural network (CNN); deep learning; end-to-end; load balance; network traffic control; VEHICLES;
D O I
10.1109/JIOT.2018.2866435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The infrastructure to vehicle (I2V) communication boosts a large number of prevailing vehicular services, which can provide vehicles with external information, storage, and computing power located at both mobile edge server (MES) and remote cloud. However, vehicle distribution is imbalanced due to the spatial inhomogeneity and temporal dynamics. As a consequence, the communication load for MES is imbalanced and vehicles may suffer from poor I2V communications where the MES is overloaded. In this paper, we propose a novel proactively load balancing approach that enables efficient cooperation among MESs, which is referred to as end-to-end load balancer (E2LB). E2LB schedules the cached data among MESs based on the predicted road traffic situation. First, a convolutional neural network (CNN) is applied to efficiently learn the spatio-temporal correlation in order to predict the road traffic situation. Then, we formulate the load balancing problem as a nonlinear programming (NLP) problem and a novel framework based on CNN is adopted to approximate the NLP optimization. Finally, we connect the above neural networks into an end-to-end neural network to jointly optimize the performance, where the input is the historical traffic situation while the output is the balanced scheduling solution. E2LB can guarantee the real-time scheduling, since the calling of a well-trained neural network only requires a small number of simple operations. Experiments on the trajectories of taxis and buses in Beijing demonstrate the efficiency and effectiveness of E2LB.
引用
下载
收藏
页码:953 / 966
页数:14
相关论文
共 50 条
  • [21] End-to-End Deep Reinforcement Learning for Image-Based UAV Autonomous Control
    Zhao, Jiang
    Sun, Jiaming
    Cai, Zhihao
    Wang, Longhong
    Wang, Yingxun
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [22] DeepChess :End-to-End Deep Neural Network for Automatic Learning in Chess
    David, Omid E.
    Netanyahu, Nathan S.
    Wolf, Lior
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 88 - 96
  • [23] Deep Reinforcement Learning for End-to-End Network Slicing: Challenges and Solutions
    Liu, Qiang
    Choi, Nakjung
    Han, Tao
    IEEE NETWORK, 2023, 37 (02): : 222 - 228
  • [24] End-to-end sound field reproduction based on deep learning
    Hong, Xi
    Du, Bokai
    Yang, Shuang
    Lei, Menghui
    Zeng, Xiangyang
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (05): : 3055 - 3064
  • [25] End-to-End Illuminant Estimation based on Deep Metric Learning
    Xu, Bolei
    Liu, Jingxin
    Hou, Xianxu
    Liu, Bozhi
    Qiu, Guoping
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3613 - 3622
  • [26] AN ALGORITHM FOR END-TO-END PERFORMANCE ANALYSIS OF NETWORK BASED ON TRAFFIC ENGINEERING
    Liu Huailiang Zhang Xin Wang Dong Xu Guohua (School of Mechano-electronic Engineering
    Journal of Electronics(China), 2003, (04) : 293 - 298
  • [27] End-to-end Deep Reinforcement Learning Based Coreference Resolution
    Fei, Hongliang
    Li, Xu
    Li, Dingcheng
    Li, Ping
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 660 - 665
  • [28] An End-to-End Image Dehazing Method Based on Deep Learning
    Zhang, Yi
    Huang, Hongbing
    Liu, Junyi
    Fan, Chao
    Wang, Yanyan
    Cai, Qing
    Ruan, Yingying
    Gong, Xiaojin
    2018 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING, 2019, 1169
  • [29] End-to-end sensorimotor control problems of AUVs with deep reinforcement learning
    Wu, Hui
    Song, Shiji
    Hsu, Yachu
    You, Keyou
    Wu, Cheng
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5869 - 5874
  • [30] Deep Reinforcement Learning based Handoff Algorithm in End-to-End Network Slicing Enabling HetNets
    Yang, Deng
    Wu, Wenjun
    Wang, Xiaoxi
    Zhang, Yanhua
    Si, Pengbo
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,