Improving Multi-label Classifiers via Label Reduction with Association Rules

被引:0
|
作者
Charte, Francisco [1 ]
Rivera, Antonio [1 ]
Jose del Jesus, Maria [1 ]
Herrera, Francisco [2 ]
机构
[1] Univ Jaen, Dep Comp Sci, Jaen, Spain
[2] Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
关键词
Multi-label Classification; Data Transformation; Dimensionality Reduction; Association Rules;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification is a generalization of well known problems, such as binary or multi-class classification, in a way that each processed instance is associated not with a class (label) but with a subset of these. In recent years different techniques have appeared which, through the transformation of the data or the adaptation of classic algorithms, aim to provide a solution to this relatively recent type of classification problem. This paper presents a new transformation technique for multi-label classification based on the use of association rules aimed at the reduction of the label space to deal with this problem.
引用
收藏
页码:188 / 199
页数:12
相关论文
共 50 条
  • [41] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Jinghua Liu
    Songwei Yang
    Yaojin Lin
    Chenxi Wang
    Cheng Wang
    Jixiang Du
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3943 - 3964
  • [42] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Liu, Jinghua
    Yang, Songwei
    Lin, Yaojin
    Wang, Chenxi
    Wang, Cheng
    Du, Jixiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3943 - 3964
  • [43] A Label Embedding Method for Multi-label Classification via Exploiting Local Label Correlations
    Wang, Xidong
    Li, Jun
    Xu, Jianhua
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 168 - 180
  • [44] Improved multi-label classifiers for predicting protein subcellular localization
    Chen, Lei
    Qu, Ruyun
    Liu, Xintong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 214 - 236
  • [45] An Efficient Multi-Label Classification System Using Ensemble of Classifiers
    Chandran, Shilpa A.
    Panicker, Janu R.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1133 - 1136
  • [46] Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers
    Melacci, Stefano
    Ciravegna, Gabriele
    Sotgiu, Angelo
    Demontis, Ambra
    Biggio, Battista
    Gori, Marco
    Roli, Fabio
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9944 - 9959
  • [47] A Novel Approach for Multi-label Classification using Probabilistic Classifiers
    Kommu, Gangadhara Rao
    Trupthi, M.
    Pabboju, Suresh
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN ENGINEERING AND TECHNOLOGY RESEARCH (ICAETR), 2014,
  • [48] Multilabel classification using heterogeneous ensemble of multi-label classifiers
    Tahir, Muhammad Atif
    Kittler, Josef
    Bouridane, Ahmed
    PATTERN RECOGNITION LETTERS, 2012, 33 (05) : 513 - 523
  • [49] Aggregating Independent and Dependent Models to Learn Multi-label Classifiers
    Montanes, Elena
    Ramon Quevedo, Jose
    Jose del Coz, Juan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2011, 6912 : 484 - 500
  • [50] Learning Gradient Boosted Multi-label Classification Rules
    Rapp, Michael
    Mencia, Eneldo Loza
    Fuernkranz, Johannes
    Nguyen, Vu-Linh
    Huellermeier, Eyke
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 124 - 140