A LS-SVM Modeling Approach for Nonlinear Distributed Parameter Processes

被引:9
|
作者
Qi, Chenkun [1 ]
Li, Han-Xiong [1 ]
机构
[1] City Univ Hong Kong, Dept Mfg Eng & Eng Management, Hong Kong, Hong Kong, Peoples R China
关键词
distributed parameter system; spatio-temporal modeling; Karhunen-Loeve decomposition; least squares support vector machines;
D O I
10.1109/WCICA.2008.4592985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The distributed parameter system modeling from the input and output data is investigated. The spatio-temporal output of the system is measured at a finite number of spatial locations, while the input is assumed to be a finite-dimensional temporal variable. Firstly, Karhunen-Loeve (KL) decomposition is used for the time/space separation and the dimension reduction. Subsequently the spatio-temporal output is expanded in terms of a low dimensional Karhunen-Loeve spatial basis functions. Finally its temporal dynamic model is learned from the temporal coefficients by using least squares support vector machines (LS-SVM). The simulations are presented to show the effectiveness of this spatio-temporal modeling method.
引用
收藏
页码:569 / 574
页数:6
相关论文
共 50 条
  • [21] Sensor dynamic modeling based on LS-SVM and NGA
    Wang, Q.
    Feng, Z.
    Shida, K.
    Key Engineering Materials, 2008, 381-382 : 439 - 442
  • [22] Comparison of SVM and LS-SVM for regression
    Wang, HF
    Hu, DJ
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 279 - 283
  • [23] Modeling for electric characteristic of SOFC based on LS-SVM
    Huo, Haibo
    Zhu, Xinjian
    Cao, Guangyi
    Gaojishu Tongxin/Chinese High Technology Letters, 2007, 17 (08): : 836 - 839
  • [24] Research on Modeling of Wind Turbine based on LS-SVM
    Yang, Xiyun
    Cui, Yuqi
    Zhang, Hongsheng
    Tang, Ningning
    2009 INTERNATIONAL CONFERENCE ON SUSTAINABLE POWER GENERATION AND SUPPLY, VOLS 1-4, 2009, : 1207 - +
  • [25] A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process
    Lu, Xinjiang
    Zou, Wei
    Huang, Minghui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (03) : 1156 - 1165
  • [26] A Novel Online LS-SVM Approach for Regression and Classification
    Damen, Erdem
    Beyhan, Selami
    IFAC PAPERSONLINE, 2017, 50 (01): : 8642 - 8647
  • [27] An enhanced online LS-SVM approach for classification problems
    Dilmen, Erdem
    Beyhan, Selami
    SOFT COMPUTING, 2018, 22 (13) : 4457 - 4475
  • [28] An enhanced online LS-SVM approach for classification problems
    Erdem Dilmen
    Selami Beyhan
    Soft Computing, 2018, 22 : 4457 - 4475
  • [29] Prediction of the ground temperature with ANN, LS-SVM and fuzzy LS-SVM for GSHP application
    Zhou, Shiyu
    Chu, Xin
    Cao, Shubo
    Liu, Xiaoping
    Zhou, Yucheng
    GEOTHERMICS, 2020, 84
  • [30] Inverse system control of nonlinear systems using LS-SVM
    Lv Guofang
    Song Jinya
    Liang Hua
    Sun Changyin
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 233 - +