A LS-SVM Modeling Approach for Nonlinear Distributed Parameter Processes

被引:9
|
作者
Qi, Chenkun [1 ]
Li, Han-Xiong [1 ]
机构
[1] City Univ Hong Kong, Dept Mfg Eng & Eng Management, Hong Kong, Hong Kong, Peoples R China
关键词
distributed parameter system; spatio-temporal modeling; Karhunen-Loeve decomposition; least squares support vector machines;
D O I
10.1109/WCICA.2008.4592985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The distributed parameter system modeling from the input and output data is investigated. The spatio-temporal output of the system is measured at a finite number of spatial locations, while the input is assumed to be a finite-dimensional temporal variable. Firstly, Karhunen-Loeve (KL) decomposition is used for the time/space separation and the dimension reduction. Subsequently the spatio-temporal output is expanded in terms of a low dimensional Karhunen-Loeve spatial basis functions. Finally its temporal dynamic model is learned from the temporal coefficients by using least squares support vector machines (LS-SVM). The simulations are presented to show the effectiveness of this spatio-temporal modeling method.
引用
收藏
页码:569 / 574
页数:6
相关论文
共 50 条
  • [1] Robust Spatiotemporal LS-SVM Modeling for Nonlinear Distributed Parameter System With Disturbance
    Lu, Xinjiang
    Zou, Wei
    Huang, Minghui
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (10) : 8003 - 8012
  • [2] MODEL PREDICTIVE CONTROL FOR NONLINEAR DISTRIBUTED PARAMETER SYSTEMS BASED ON LS-SVM
    Ai, Ling
    San, Ye
    [J]. ASIAN JOURNAL OF CONTROL, 2013, 15 (05) : 1407 - 1416
  • [3] Nonlinear Modeling and Parameter Identification of Hysteresis Characteristics on Piezoelectric Actuator Based on LS-SVM
    基于最小二乘支持向量机的压电作动器 迟滞非线性建模及参数辨识
    [J]. Hu, Hongsheng (hhs999@mail.zjxu.edu.cn), 2018, Chinese Mechanical Engineering Society (29):
  • [4] Spatiotemporal LS-SVM inverse control for nonlinear distributed parameter systems with application to heating process
    Bowen Xu
    Xinjiang Lu
    [J]. Nonlinear Dynamics, 2023, 111 : 17229 - 17246
  • [5] Spatiotemporal LS-SVM inverse control for nonlinear distributed parameter systems with application to heating process
    Xu, Bowen
    Lu, Xinjiang
    [J]. NONLINEAR DYNAMICS, 2023, 111 (18) : 17229 - 17246
  • [6] Modeling and Parameter Identification of the MR Damper Based on LS-SVM
    Qian, Cheng
    Yin, Xiaoliang
    Ouyang, Qing
    [J]. INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2021, 2021
  • [7] Generalization of Parameter Selection of SVM and LS-SVM for Regression
    Zeng, Jiye
    Tan, Zheng-Hong
    Matsunaga, Tsuneo
    Shirai, Tomoko
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (02): : 745 - 755
  • [8] Local Weighted LS-SVM Online Modeling and the Application in Continuous Processes
    Li, Lijuan
    Yu, Hui
    Liu, Jun
    Zhang, Shi
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, AICI 2010, PT II, 2010, 6320 : 209 - 217
  • [9] A weighted LS-SVM approach for the identification of a class of nonlinear inverse systems
    Sun ChangYin
    Mu ChaoXu
    Li XunMing
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (05): : 770 - 779
  • [10] A weighted LS-SVM approach for the identification of a class of nonlinear inverse systems
    SUN ChangYin1
    2 College of Electrical Engineering
    [J]. Science China(Information Sciences), 2009, (05) : 770 - 779