Reproducing Kernel Space Method for the Solution of Linear Fredholm Integro-Differential Equations and Analysis of Stability

被引:2
|
作者
Lv, Xueqin [1 ]
Gao, Yue [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
HOMOTOPY PERTURBATION METHOD; NUMERICAL-SOLUTION; INTEGRAL-EQUATION;
D O I
10.1155/2012/971593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical method to solve the linear Fredholm integro-differential equation in reproducing kernel space. A simple algorithm is given to obtain the approximate solutions of the equation. Through the comparison of approximate and true solution, we can find that the method can effectively solve the linear Fredholm integro-differential equation. At the same time the numerical solution of the equation is stable.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A new application of the reproducing kernel method for solving linear systems of fractional order Volterra integro-differential equations
    Amoozad, Taher
    Abbasbandy, Saeid
    Sahihi, Hussein
    Allahviranloo, Tofigh
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [32] A Reproducing Kernel Method for Solving Systems of Integro-differential Equations with Nonlocal Boundary Conditions
    M. Ghasemi
    M. Fardi
    E. Moradi
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 1375 - 1382
  • [33] A Reproducing Kernel Method for Solving Systems of Integro-differential Equations with Nonlocal Boundary Conditions
    Ghasemi, M.
    Fardi, M.
    Moradi, E.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (04): : 1375 - 1382
  • [34] Numerical Solution of Linear Fredholm Integro-Differential Equations by Non-standard Finite Difference Method
    Pandey, Pramod Kumar
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2015, 10 (02): : 1019 - 1026
  • [35] A new computational method for solution of non-linear Volterra-Fredholm integro-differential equations
    Maleknejad, K.
    Sohrabi, S.
    Derili, H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (02) : 327 - 338
  • [36] Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method
    Hosseini, SM
    Shahmorad, S
    APPLIED MATHEMATICAL MODELLING, 2005, 29 (11) : 1005 - 1021
  • [37] Numerical solution of fuzzy Fredholm integro-differential equations by polynomial collocation method
    Suvankar Biswas
    Sandip Moi
    Smita Pal Sarkar
    Computational and Applied Mathematics, 2021, 40
  • [38] Numerical solution of fuzzy Fredholm integro-differential equations by polynomial collocation method
    Biswas, Suvankar
    Moi, Sandip
    Sarkar, Smita Pal
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [39] Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method
    Atabakan, Z. Pashazadeh
    Nasab, A. Kazemi
    Kilicman, A.
    Eshkuvatov, Zainidin K.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [40] A Chebyshev collocation method for the solution of linear integro-differential equations
    Akyüz, A
    Sezer, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (04) : 491 - 507