Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

被引:48
|
作者
Leitner, D. [1 ]
Lyneis, C. M. [1 ]
Loew, T. [1 ]
Todd, D. S. [1 ]
Virostek, S. [1 ]
Tarvainen, O. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2006年 / 77卷 / 03期
关键词
D O I
10.1063/1.2149298
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p mu A of Kr17+(260 e mu A), 12 p mu A of Xe20+ (240 e mu A of Xe20+), and 8 p mu A of U28+(230 e mu A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e mu A of Xe27+ and 245 e mu A of Bi-29, while for the higher charge states 15 e mu A of Xe34+, 15 e mu A of Bi41+, and 0.5 e mu A of Bi50+ could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Development of a new superconducting electron cyclotron resonance ion source for operations up to 18 GHz at LBNL
    Xie, D. Z.
    Benitez, J. Y.
    Caspi, S.
    Hodgkinson, A.
    Lyneis, C. M.
    Phair, L. W.
    Prestemon, S. O.
    Strohmeier, M. M.
    Thuillier, T. P.
    Todd, D. S.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02):
  • [32] ASTERICS, a new 28 GHz electron cyclotron resonance ion source for the SPIRAL2 accelerator
    Thuillier, T.
    Angot, J.
    Cernuschi, A.
    Giraud, J.
    Peaucelle, C.
    Kiener, F.
    Lagorio, E.
    Perbet, E.
    Sole, P.
    Shick, S.
    Vezzu, F.
    Simon, D.
    Allain, H.
    Berriaud, C.
    Cadoux, T.
    Felice, H.
    Fernandez-Mora, E.
    Guillo, T.
    Graffin, P.
    Kleymenov, V.
    Sinnana, A.
    Touzery, R.
    Trieste, S.
    Vallcorba, R.
    Dubois, M.
    Lemagnen, F.
    Osmond, B.
    Trudel, A.
    Goupilliere, D.
    [J]. 20TH INTERNATIONAL CONFERENCE ON ION SOURCES, 2024, 2743
  • [33] Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source
    Ohnishi, J.
    Higurashi, Y.
    Nakagawa, T.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [34] Effect of Biased Disc on Brightness of Highly Charged Uranium Ions from RIKEN 28 GHz Superconducting Electron Cyclotron Resonance Ion Source
    Ozeki, Kazutaka
    Higurashi, Yoshihide
    Ohnishi, Jun-ichi
    Nakagawa, Takahide
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (06)
  • [35] Magnet tests and status of the superconducting electron cyclotron resonance source SERSE
    Ciavola, G
    Gammino, S
    Cafici, M
    Castro, M
    Chines, F
    Marletta, S
    Alessandria, F
    Bourg, F
    Briand, P
    Melin, G
    Lagnier, R
    Seyfert, P
    Gaggero, G
    Losasso, M
    Penco, R
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03): : 889 - 891
  • [36] SEISM: A 60 GHz cusp electron cyclotron resonance ion source
    Latrasse, L.
    Marie-Jeanne, M.
    Lamy, T.
    Thuillier, T.
    Giraud, J.
    Fourel, C.
    Trophime, C.
    Debray, F.
    Sala, P.
    Dumas, J.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (02):
  • [37] Study of the Characteristics of a 2.45 GHz Electron Cyclotron Resonance Ion Source
    K. Berestov
    S. Bogomolov
    K. Kuzmenkov
    [J]. Physics of Particles and Nuclei Letters, 2023, 20 : 1246 - 1249
  • [38] Development of a 14.5 GHz Electron Cyclotron Resonance Ion Source at KAERI
    Oh, Byung-Hoon
    In, Sang-Ryul
    Lee, Kwang-Won
    Seo, Chang Seog
    Jin, Jeong-Tae
    Chang, Dae-Sik
    Jeong, Seung-Ho
    Hwang, Churl-Kew
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 58 (04) : 771 - 775
  • [39] Waveguide Development for a 2.46 GHz Electron Cyclotron Resonance Ion Source
    M. S. Dmitriev
    M. V. D’yakonov
    S. A. Tumanov
    [J]. Physics of Atomic Nuclei, 2022, 85 : 1899 - 1901
  • [40] Development of 13 GHz compact electron cyclotron resonance ion source
    Saitoh, Y
    Ohkoshi, K
    Arakawa, K
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05): : 1502 - 1505