On the self-length of two-dimensional Banach spaces

被引:4
|
作者
Chalmers, B
Franchetti, C
Giaquinta, M
机构
[1] UNIV CALIF RIVERSIDE,DEPT MATH,RIVERSIDE,CA 92521
[2] UNIV FLORENCE,DIPARTIMENTO MATEMAT APPLICATA,I-50139 FLORENCE,ITALY
关键词
D O I
10.1017/S0004972700016762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the following result: if X is a 2-dimensional symmetric real Banach space, then its self-length is greater than or equal to 2 pi. Moreover, the minimum value 2 pi is uniquely attained (up to isometries) by euclidean space.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [21] Partitioning two-dimensional mixed phase spaces
    Mitchell, Kevin A.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (20) : 1718 - 1734
  • [22] A Two-Dimensional Hybrid Logic of Subset Spaces
    Wang, Yi N.
    LOGIC AND ITS APPLICATIONS, 2009, 5378 : 196 - 209
  • [23] Two-dimensional metric spaces with prescribed geodesics
    Busemann, H
    ANNALS OF MATHEMATICS, 1939, 40 : 129 - 140
  • [24] Visualizing Design Spaces Using Two-Dimensional Contextual Self-Organizing Maps
    Richardson, Trevor
    Nekolny, Brett
    Holub, Joseph
    Winer, Eliot H.
    AIAA JOURNAL, 2014, 52 (04) : 725 - 738
  • [25] MONTE-CARLO SIMULATION OF MULTIPLE CHAIN SYSTEMS - SCREENING LENGTH IN TWO-DIMENSIONAL AND 3-DIMENSIONAL SPACES
    KHALATUR, PG
    PLETNEVA, SG
    PAPULOV, YG
    JOURNAL DE PHYSIQUE LETTRES, 1982, 43 (18): : L683 - L686
  • [26] REGULARITY OF AML FUNCTIONS IN TWO-DIMENSIONAL NORMED SPACES
    Tapia-Garcia, Sebastian
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 114 (03) : 406 - 430
  • [27] Hardy spaces and compensated compactness: A two-dimensional result
    Flori, Fabien
    Giacomoni, Catherine
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (23-24) : 889 - 893
  • [28] Homotopy groups of spaces of curves on two-dimensional manifolds
    Inshakov, AV
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (02) : 390 - 391
  • [29] Correlation length in a generalized two-dimensional XY model
    Duong Xuan Nui
    Le Tuan
    Nguyen Duc Trung Kien
    Pham Thanh Huy
    Dang, Hung T.
    Dao Xuan Viet
    PHYSICAL REVIEW B, 2018, 98 (14)
  • [30] Path length distribution in two-dimensional causal sets
    Aghili, M.
    Bombelli, L.
    Pilgrim, B. B.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (09):