On the self-length of two-dimensional Banach spaces

被引:4
|
作者
Chalmers, B
Franchetti, C
Giaquinta, M
机构
[1] UNIV CALIF RIVERSIDE,DEPT MATH,RIVERSIDE,CA 92521
[2] UNIV FLORENCE,DIPARTIMENTO MATEMAT APPLICATA,I-50139 FLORENCE,ITALY
关键词
D O I
10.1017/S0004972700016762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the following result: if X is a 2-dimensional symmetric real Banach space, then its self-length is greater than or equal to 2 pi. Moreover, the minimum value 2 pi is uniquely attained (up to isometries) by euclidean space.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条