MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF INFINITE DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS

被引:0
|
作者
Al-Hussein, Abdulrahman [1 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2012年 / 21卷 / 2-3期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide necessary and sufficient conditions for optimality of a stochastic differential equation driven by an infinite dimensional martingale, and its solution takes its values in a separable Hilbert space. By using the adjoint equation, which is a backward stochastic differential equation, we derive the maximum principle in the sense of Pontryagin for this optimal control problem.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [31] A mean-field maximum principle for optimal control of forward–backward stochastic differential equations with Poisson jump processes
    Hafayed M.
    [J]. Hafayed, Mokhtar (hafayedmokhtar@yahoo.com), 2013, Springer Science and Business Media Deutschland GmbH (01) : 300 - 315
  • [32] ERGODIC CONTROL OF INFINITE-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH DEGENERATE NOISE
    Cosso, Andrea
    Guatteri, Giuseppina
    Tessitore, Gianmario
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [33] Infinite Horizon Stochastic Delay Evolution Equations in Hilbert Spaces and Stochastic Maximum Principle
    Li, Han
    Zhou, Jianjun
    Dai, Haoran
    Xu, Biteng
    Dong, Wenxu
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (03): : 635 - 665
  • [34] Infinite Horizon Stochastic Maximum Principle for Stochastic Delay Evolution Equations in Hilbert Spaces
    Haoran Dai
    Jianjun Zhou
    Han Li
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3229 - 3258
  • [35] Infinite Horizon Stochastic Maximum Principle for Stochastic Delay Evolution Equations in Hilbert Spaces
    Dai, Haoran
    Zhou, Jianjun
    Li, Han
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3229 - 3258
  • [36] Infinite-Dimensional Stochastic Differential Equations with Symmetry
    Osada, Hirofumi
    [J]. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 549 - 559
  • [37] PENG'S MAXIMUM PRINCIPLE FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Stannat, Wilhelm
    Wessels, Lukas
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 3552 - 3573
  • [38] The Stampacchia maximum principle for stochastic partial differential equations and applications
    Chekroun, Mickael D.
    Park, Eunhee
    Temam, Roger
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) : 2926 - 2972
  • [39] Stochastic maximum principle for optimal control with multiple priors
    Xu, Yuhong
    [J]. SYSTEMS & CONTROL LETTERS, 2014, 64 : 114 - 118
  • [40] Stochastic maximum principle for optimal control under uncertainty
    Rico-Ramirez, V
    Diwekar, UM
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (12) : 2845 - 2849