FANO THREEFOLDS OF GENUS 6

被引:0
|
作者
Logachev, Dmitry [1 ,2 ]
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas, Venezuela
[2] Inst Appl Math, Khabarovsk Div, Khabarovsk 680000, Russia
关键词
Fano threefolds; Fano surfaces; middle Jacobian; tangent bundle theorem; global Torelli theorem; BIRATIONAL AUTOMORPHISMS; ALGEBRAIC-MANIFOLDS; INTEGRALS; VARIETY; PERIODS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ideas and methods of Clemens C. H., Griffiths Ph. The intermediate Jacobian of a cubic threefold are applied to a Fano threefold X of genus 6 - intersection of G(2, 5) subset of P-9 with P-7 and a quadric. Main results: 1. The Fano surface F(X) of X is smooth and irreducible. Hodge numbers and some other invariants of F(X) are calculated. 2. Tangent bundle theorem for X is proved, and its geometric interpretation is given. It is shown that F(X) defines X uniquely. 3. The Abel - Jacobi map Phi : Alb F(X) -> J(3)(X) is an isogeny. 4. As a necessary step of calculation of h(1,0)(F(X)) we describe a special intersection of 3 quadrics in P-6 (having 1 double point) whose Hesse curve is a smooth plane curve of degree 6. 5. im Phi (F(X)) subset of J3(X) is algebraically equivalent to 2 Theta 8 8! where Theta subset of J3(X) is a Poincare divisor (a sketch of the proof).
引用
收藏
页码:515 / 559
页数:45
相关论文
共 50 条
  • [21] Morphisms between Fano threefolds
    Schuhmann, C
    JOURNAL OF ALGEBRAIC GEOMETRY, 1999, 8 (02) : 221 - 244
  • [22] On the rationality of certain Fano threefolds
    Ciliberto, Ciro
    MANUSCRIPTA MATHEMATICA, 2024, 174 (1-2) : 203 - 219
  • [23] Instanton sheaves on Fano threefolds
    Comaschi, Gaia
    Jardim, Marcos
    MANUSCRIPTA MATHEMATICA, 2024, 175 (1-2) : 293 - 343
  • [24] Canonical Toric Fano Threefolds
    Kasprzyk, Alexander M.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (06): : 1293 - 1309
  • [25] On the Futaki invariant of Fano threefolds
    Sektnan L.M.
    Tipler C.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (3) : 811 - 837
  • [26] Derived categories of Fano threefolds
    Kuznetsov, A. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 264 (01) : 110 - 122
  • [27] BOUNDEDNESS OF THE DEGREE OF FANO THREEFOLDS
    LVOVSKII, SM
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 45 (06): : 521 - 558
  • [28] Hyperelliptic and trigonal Fano threefolds
    Przyjalkowski, VV
    Cheltsov, IA
    Shramov, KA
    IZVESTIYA MATHEMATICS, 2005, 69 (02) : 365 - 421
  • [29] Fano threefolds in positive characteristic
    Megyesi, G
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (02) : 207 - 218
  • [30] Quintic threefolds and Fano elevenfolds
    Segal, Ed
    Thomas, Richard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 743 : 245 - 259