Predicting keratinocyte carcinoma in patients with actinic keratosis: development and internal validation of a multivariable risk-prediction model

被引:14
|
作者
Tokez, S. [1 ]
Alblas, M. [2 ]
Nijsten, T. [1 ]
Pardo, L. M. [1 ]
Wakkee, M. [1 ]
机构
[1] Erasmus MC, Canc Inst, Dept Dermatol, Rotterdam, Netherlands
[2] Erasmus MC, Univ Med Ctr, Dept Publ Hlth, Rotterdam, Netherlands
关键词
SQUAMOUS-CELL CARCINOMA; NONMELANOMA SKIN-CANCER; BASAL-CELL; COFFEE CONSUMPTION; MELANOCYTIC NEVI; SUN EXPOSURE; CAFFEINE; TEA; EPIDEMIOLOGY; METAANALYSIS;
D O I
10.1111/bjd.18810
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background Patients with actinic keratosis (AK) are at increased risk for developing keratinocyte carcinoma (KC) but predictive factors and their risk rates are unknown. Objectives To develop and internally validate a prediction model to calculate the absolute risk of a firstKCin patients withAK. Methods The risk-prediction model was based on the prospective population-based Rotterdam Study cohort. We hereto analysed the data of participants with at least oneAKlesion at cohort baseline using a multivariable Cox proportional hazards model and included 13 a priori defined candidate predictor variables considering phenotypic, genetic and lifestyle risk factors.KCs were identified by linkage of the data with the Dutch Pathology Registry. Results Of the 1169AKparticipants at baseline, 176 (15 center dot 1%) developed aKCafter a median follow-up of 1 center dot 8 years. The final model with significant predictors was obtained after backward stepwise selection and comprised the presence of four to nineAKs [hazard ratio (HR) 1 center dot 68, 95% confidence interval (CI) 1 center dot 17-2 center dot 42], 10 or moreAKs (HR2 center dot 44, 95%CI1 center dot 65-3 center dot 61),AKlocalization on the upper extremities (HR0 center dot 75, 95%CI0 center dot 52-1 center dot 08) or elsewhere except the head (HR1 center dot 40, 95%CI0 center dot 98-2 center dot 01) and coffee consumption (HR0 center dot 92, 95%CI0 center dot 84-1 center dot 01). Evaluation of the discriminative ability of the model showed a bootstrap validated concordance index (c-index) of 0 center dot 60. Conclusions We showed that the risk ofKCin patients withAKcan be calculated with the use of four easily assessable predictor variables. Given the c-index, extension of the model with additional, currently unknown predictor variables is desirable. Linked Comment: Kimet al. Br J Dermatol2020; 183:415-416.
引用
收藏
页码:495 / 502
页数:8
相关论文
共 50 条
  • [21] Risk of 30-Day Hospital Readmission Among Patients Discharged to Skilled Nursing Facilities: Development and Validation of a Risk-Prediction Model
    Chandra, Anupam
    Rahman, Parvez A.
    Sneve, Amelia
    McCoy, Rozalina G.
    Thorsteinsdottir, Bjorg
    Chaudhry, Rajeev
    Storlie, Curtis B.
    Murphree, Dennis H., Jr.
    Hanson, Gregory J.
    Takahashi, Paul Y.
    JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2019, 20 (04) : 444 - +
  • [22] Validation of a mortality risk-prediction model as a basis for listing patients on the kidney transplant waiting list
    Oniscu, GC
    Brown, H
    Forsythe, JLR
    AMERICAN JOURNAL OF TRANSPLANTATION, 2005, 5 : 403 - 404
  • [23] Risk-prediction Model for Patients Undergoing Laparoscopic Hysterectomy
    Pepin, Kristen
    Cook, Francis
    Maghsoudlou, Parmida
    Cohen, Sarah L.
    JOURNAL OF MINIMALLY INVASIVE GYNECOLOGY, 2021, 28 (10) : 1751 - +
  • [24] Development and validation of multivariable mortality risk-prediction models in older people undergoing an interRAI home-care assessment (RiskOP)
    Pickering, John W.
    Abey-Nesbit, Rebecca
    Allore, Heather
    Jamieson, Hamish
    ECLINICALMEDICINE, 2020, 29-30
  • [25] Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
    Beth A. Payne
    Helen Ryan
    Jeffrey Bone
    Laura A. Magee
    Alice B. Aarvold
    J. Mark Ansermino
    Zulfiqar A. Bhutta
    Mary Bowen
    J. Guilherme Cecatti
    Cynthia Chazotte
    Tim Crozier
    Anne-Cornélie J. M. de Pont
    Oktay Demirkiran
    Tao Duan
    Marlot Kallen
    Wessel Ganzevoort
    Michael Geary
    Dena Goffman
    Jennifer A. Hutcheon
    K. S. Joseph
    Stephen E. Lapinsky
    Isam Lataifeh
    Jing Li
    Sarka Liskonova
    Emily M. Hamel
    Fionnuala M. McAuliffe
    Colm O’Herlihy
    Ben W. J. Mol
    P. Gareth R. Seaward
    Ramzy Tadros
    Turkan Togal
    Rahat Qureshi
    U. Vivian Ukah
    Daniela Vasquez
    Euan Wallace
    Paul Yong
    Vivian Zhou
    Keith R. Walley
    Peter von Dadelszen
    Critical Care, 22
  • [26] Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model
    Payne, Beth A.
    Ryan, Helen
    Bone, Jeffrey
    Magee, Laura A.
    Aarvold, Alice B.
    Ansermino, J. Mark
    Bhutta, Zulfiqar A.
    Bowen, Mary
    Cecatti, J. Guilherme
    Chazotte, Cynthia
    Crozier, Tim
    de Pont, Anne-Cornelie J. M.
    Demirkiran, Oktay
    Duan, Tao
    Kallen, Marlot
    Ganzevoort, Wessel
    Geary, Michael
    Goffman, Dena
    Hutcheon, Jennifer A.
    Joseph, K. S.
    Lapinsky, Stephen E.
    Lataifeh, Isam
    Li, Jing
    Liskonova, Sarka
    Hamel, Emily M.
    McAuliffe, Fionnuala M.
    O'Herlihy, Colm
    Mol, Ben W. J.
    Seaward, P. Gareth R.
    Tadros, Ramzy
    Togal, Turkan
    Qureshi, Rahat
    Ukah, U. Vivian
    Vasquez, Daniela
    Wallace, Euan
    Yong, Paul
    Zhou, Vivian
    Walley, Keith R.
    von Dadelszen, Peter
    CRITICAL CARE, 2018, 22
  • [27] Development and validation of a risk-prediction nomogram for patients with ureteral calculi associated with urosepsis: A retrospective analysis
    Hu, Ming
    Zhong, Xintai
    Cui, Xuejiang
    Xu, Xun
    Zhang, Zhanying
    Guan, Lixian
    Feng, Quanyao
    Huang, Yiheng
    Hu, Weilie
    PLOS ONE, 2018, 13 (08):
  • [28] Transnasal Videoendoscopy for Preoperative Airway Risk Stratification: Development and Validation of a Multivariable Risk Prediction Model
    Barclay-Steuart, Alexander
    Grosshennig, Hanna L.
    Sasu, Phillip
    Wuensch, Viktor A.
    Stadlhofer, Rupert
    Berger, Joanna
    Stark, Maria
    Sehner, Susanne
    Zoellner, Christian
    Petzoldt, Martin
    ANESTHESIA AND ANALGESIA, 2023, 136 (06): : 1164 - 1173
  • [29] Development and validation of a multivariable prediction model for mediastinitis poststernotomy
    M Nieto
    M Sanchez
    B Busto
    E Morales
    I Garcia
    C Manuel
    L Cano
    C Fernandez
    Intensive Care Medicine Experimental, 3 (Suppl 1)
  • [30] Development and Internal Validation of a Multivariable Prediction Model to Predict Repeat Attendances in the Pediatric Emergency Department
    Seers, Tim
    Reynard, Charles
    Martin, Glen P.
    Body, Richard
    PEDIATRIC EMERGENCY CARE, 2024, 40 (01) : 16 - 21