Generalized Projection-Based M-Estimator

被引:51
|
作者
Mittal, Sushil [1 ]
Anand, Saket [2 ]
Meer, Peter [2 ]
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Rutgers State Univ, Dept Elect & Comp Engn, CAIP Ctr, Piscataway, NJ 08854 USA
关键词
Generalized projection-based M-estimator; robust estimation; heteroscedasticity; RANSAC; RANDOM SAMPLE CONSENSUS; ROBUST; SEGMENTATION; MOTION; FACTORIZATION; MODELS;
D O I
10.1109/TPAMI.2012.52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel robust estimation algorithm-the generalized projection-based M-estimator (gpbM), which does not require the user to specify any scale parameters. The algorithm is general and can handle heteroscedastic data with multiple linear constraints for single and multicarrier problems. The gpbM has three distinct stages-scale estimation, robust model estimation, and inlier/outlier dichotomy. In contrast, in its predecessor pbM, each model hypotheses was associated with a different scale estimate. For data containing multiple inlier structures with generally different noise covariances, the estimator iteratively determines one structure at a time. The model estimation can be further optimized by using Grassmann manifold theory. We present several homoscedastic and heteroscedastic synthetic and real-world computer vision problems with single and multiple carriers.
引用
收藏
页码:2351 / 2364
页数:14
相关论文
共 50 条
  • [21] M-estimator based unit root tests in the ESTAR framework
    Sandberg, Rickard
    STATISTICAL PAPERS, 2015, 56 (04) : 1115 - 1135
  • [22] Dynamic data reconciliation based on an improved robust M-estimator
    Zhang, Yu
    Wang, Xiaoli
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2323 - 2329
  • [23] M-estimator based unit root tests in the ESTAR framework
    Rickard Sandberg
    Statistical Papers, 2015, 56 : 1115 - 1135
  • [24] An Improved Robust Fractal Image Compression Based on M-Estimator
    Huang, Penghe
    Li, Dongyan
    Zhao, Huimin
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [25] The linear e1 estimator and the Huber m-estimator
    Li, W
    Swetits, JJ
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) : 457 - 475
  • [26] Local M-estimator for nonparametric time series
    Cai, ZW
    Ould-Saïd, E
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (04) : 433 - 449
  • [27] When the mean fails, use an M-estimator
    Cajal, Berta
    Gervilla, Elena
    Palmer, Alfonso
    ANALES DE PSICOLOGIA, 2012, 28 (01): : 281 - 288
  • [28] An M-estimator for the long-memory parameter
    Reisen, V. A.
    Levy-Leduc, C.
    Taqqu, M. S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 187 : 44 - 55
  • [29] Multiple comparisons based on a modified one-step M-estimator
    Wilcox, RR
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (10) : 1231 - 1241
  • [30] New method for robust data reconciliation based on Biweight M-Estimator
    Jin, Si-Yi
    Liu, Meng
    Li, Ning
    Tao, Shao-Hui
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2010, 24 (04): : 676 - 680