The first frost in the Pipe Nebula

被引:8
|
作者
Goto, Miwa [1 ,2 ]
Bailey, Jeffrey D. [1 ]
Hocuk, Seyit [1 ]
Caselli, Paola [1 ]
Esplugues, Gisela B. [1 ,3 ]
Cazaux, Stephanie [3 ,4 ,5 ]
Spaans, Marco [3 ]
机构
[1] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
[2] Ludwig Maximilians Univ Munchen, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany
[3] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands
[4] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[5] Delft Univ Technol, Aerosp Engn, Kluyverweg 1, NL-2629 HS Delft, Netherlands
来源
ASTRONOMY & ASTROPHYSICS | 2018年 / 610卷
基金
欧洲研究理事会; 美国国家航空航天局; 美国国家科学基金会;
关键词
astrochemistry; ISM: clouds; ISM: individual objects: the Pipe Nebula; ISM: molecules; infrared: ISM; solid state: volatile; TAURUS DARK CLOUD; INTERSTELLAR EXTINCTION LAW; DENSE CORE POPULATION; 8.0; MU-M; INFRARED-SPECTROSCOPY; STARLESS CORES; SOLID CO; PRESTELLAR CORES; ICE; DUST;
D O I
10.1051/0004-6361/201629830
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims. We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods. Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results. The water ice absorption is positively detected at 3.0 mu m in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 mu m as well. The fractional abundance of CO ice with respect to water ice is 16(-6)(+7) %, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions. A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] The mid-infrared extinction law in the darkest cores of the Pipe Nebula
    Ascenso, J.
    Lada, C. J.
    Alves, J.
    Roman-Zuniga, C. G.
    Lombardi, M.
    ASTRONOMY & ASTROPHYSICS, 2013, 549
  • [32] Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field
    Alves, F. O.
    Franco, G. A. P.
    Girart, J. M.
    ASTRONOMY & ASTROPHYSICS, 2008, 486 (02) : L13 - L16
  • [33] Theoretic study on the technology of applying heat pipe to solving frost heaving
    Wu, Cun-Zhen
    Sun, Zhi-Jian
    Pan, Yang
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2002, 24 (03):
  • [34] Recent changes in first and last frost dates and frost-free period in Serbia
    Malinovic-Milicevic, Slavica
    Stanojevic, Gorica
    Radovanovic, Milan M.
    GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY, 2018, 100 (01) : 44 - 58
  • [35] CHARACTERISTICS OF FIRST AND LAST FROST OCCURRENCES AND THE LENGTH OF FROST-FREE SEASON IN BULGARIA
    Nikolova, N.
    Matev, S.
    Rachev, G.
    Ivanova, D.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2021, 22 (01): : 85 - 94
  • [36] The Last Days of Summer Before the First Frost
    Bowling, Tim
    POETRY, 2011, 198 (01) : 35 - 35
  • [37] First Frost: Cozy Folk Knitting.
    Williamson, Gayle A.
    LIBRARY JOURNAL, 2015, 140 (01) : 105 - 105
  • [38] The 'last days of summer before the first frost'
    不详
    FIDDLEHEAD, 2008, (235): : 34 - 34
  • [39] The nature of the dense core population in the Pipe Nebula: Thermal cores under pressure
    Lada, Charles J.
    Muench, A. A.
    Rathborne, J.
    Alves, Joao F.
    Lombardi, M.
    ASTROPHYSICAL JOURNAL, 2008, 672 (01): : 410 - 422
  • [40] Distortion of Magnetic Fields in the Dense Core CB81 (L1774, Pipe 42) in the Pipe Nebula
    Kandori, Ryo
    Tamura, Motohide
    Saito, Masao
    Tomisaka, Kohji
    Matsumoto, Tomoaki
    Tazaki, Ryo
    Nagata, Tetsuya
    Kusakabe, Nobuhiko
    Nakajima, Yasushi
    Kwon, Jungmi
    Nagayama, Takahiro
    Tatematsu, Ken'ichi
    ASTROPHYSICAL JOURNAL, 2020, 890 (01):