On constacyclic codes of length 4ps over Fpm + uFpm

被引:42
|
作者
Dinh, Hai Q. [1 ,2 ,3 ]
Dhompongsa, Sompong [4 ]
Sriboonchitta, Songsak [5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Kent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
[4] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 52000, Thailand
[5] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
关键词
Constacyclic codes; Dual codes; Repeated-root codes; Codes over rings; Chain rings; SELF-DUAL CODES; CYCLIC CODES; NEGACYCLIC CODES; F-2+UF(2); Z(4); PREPARATA; KERDOCK; 2P(S); 2(S);
D O I
10.1016/j.disc.2016.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any odd prime p such that p(m) equivalent to 1 (mod 4), the structures of all lambda-constacyclic codes of length 4p(s) over the finite commutative chain ring F(p)m + uF(p)m (u(2) = 0) are established in terms of their generator polynomials. If the unit A is a square, each lambda-constacyclic code of length 4p(s) is expressed as a direct sum of an -alpha-constacyclic code and an alpha-constacyclic code of length 2p(s). In the main case that the unit lambda is not a square, it is shown that any nonzero polynomial of degree < 4 over F(p)m is invertible in the ambient ring (F(p)m+uF(p)m)[x]/(x(4ps)-lambda) When the unit lambda is of the form lambda = alpha + u beta for nonzero elements alpha, beta of F(p)m, it is obtained that the ambient ring (F(p)m+uF(p)m)[x]/x(4ps)-(alpha+u beta))is a chain ring with maximal ideal (x(4) - alpha(0)), and so the (alpha + u beta)-constacyclic codes are ((x(4) - alpha(0))(i)), for 0 <= i <= 2p(s). For the remaining case, that the unit lambda is not a square, and lambda = gamma for a nonzero element gamma of F(p)m, it is proven that the ambient ring F(p)m+uF(p)m)[x]/(x(4)ps-gamma) is a local ring with the unique maximal ideal (x(4) - gamma(0), u). Such lambda-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each lambda-constacyclic code are provided. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:832 / 849
页数:18
相关论文
共 50 条
  • [31] ON σ-SELF-ORTHOGONAL CONSTACYCLIC CODES OVER Fpm + uFPm
    Liu, Hongwei
    Liu, Jingge
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (03) : 643 - 665
  • [32] The cyclic codes of length 5ps over Fpm + uFpm and their dual codes
    BOUDINE, B. R. A. H. I. M.
    LAAOUINE, J. A. M. A. L.
    CHARKANI, M. O. H. A. M. M. E. D. E. L. H. A. S. S. A. N. I.
    MATHEMATICAL COMMUNICATIONS, 2022, 27 (01) : 127 - 135
  • [33] CYCLIC AND NEGACYCLIC CODES OF LENGTH 2ps OVER Fpm + uFpm
    Liu, Xiusheng
    Xu, Xiaofang
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 829 - 839
  • [34] On cyclic codes of length 8ps over Fpm + uFpm 3
    Rani, Saroj
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [35] Cyclic codes of length 5ps over Fpm + uFpm and their duals
    Dinh, Hai Q.
    Nguyen, Bac T.
    Tansuchat, Roengchai
    Thi, Hiep L.
    FILOMAT, 2023, 37 (26) : 9009 - 9038
  • [36] Hamming distances of constacyclic codes of length 7ps over Fpm
    Dinh, Hai Q.
    Ha, Hieu V.
    Nguyen, Nhan T. V.
    Tran, Nghia T. H.
    Vo, Thieu N.
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [37] b-Symbol Distance of Constacylic Codes of Length ps Over Fpm + uFpm
    Dinh, H. Q.
    Gaur, Atul
    Singh, A. K.
    Singh, Manoj Kumar
    Yamaka, W.
    IEEE ACCESS, 2020, 8 : 67330 - 67341
  • [38] Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4ps over Fpm
    Dinh, Hai Q.
    Le, Ha T.
    Nguyen, Bac T.
    Tansuchat, Roengchai
    QUANTUM INFORMATION PROCESSING, 2021, 20 (11)
  • [39] Quantum codes from (1+βu)-constacyclic codes over Fpm + uFpm
    Biswas, Soumak
    Bhaintwal, Maheshanand
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [40] On self-dual skew cyclic codes of length ps over Fpm + uFpm
    Hesari, Roghayeh Mohammadi
    Rezaei, Rashid
    Samei, Karim
    DISCRETE MATHEMATICS, 2021, 344 (11)