Feature-Level Fusion of Physiological Parameters to be Used as Cryptographic Keys

被引:0
|
作者
Altop, Duygu Karaoglan [1 ]
Levi, Albert [1 ]
Tuzcu, Volkan [2 ]
机构
[1] Sabanci Univ, Dept Comp Sci & Engn, Istanbul, Turkey
[2] Istanbul Medipol Univ, Dept Pediat Cardiol, Istanbul, Turkey
关键词
Cryptographic Key Generation; Body Area Network Security; Physiological Signals; Key Agreement; Bio-cryptography; Feature-Level Fusion;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we propose two novel feature-level fused physiological parameter generation techniques: (i) concat-fused physiological parameter generation, and (ii) xor-fused physiological parameter generation, output of which can be used to secure the communication among the biosensors in Body Area Network (BAN). In these physiological parameter generation techniques, we combine a time-domain physiological parameter with a frequency-domain physiological parameter, in order to achieve robust performance compared to their singular versions. We analyze both the performance and the quality of the outcomes. Our results show that we generate good candidates of physiological parameters that can be used as cryptographic keys to provide security for the intra-network communication in BANs.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Speech emotion classification using feature-level and classifier-level fusion
    Mishra, Siba Prasad
    Warule, Pankaj
    Deb, Suman
    EVOLVING SYSTEMS, 2024, 15 (02) : 541 - 554
  • [32] Speech emotion classification using feature-level and classifier-level fusion
    Siba Prasad Mishra
    Pankaj Warule
    Suman Deb
    Evolving Systems, 2024, 15 : 541 - 554
  • [33] Color Component Feature Selection in Feature-Level Fusion Based Color Face Recognition
    Lee, Seung Ho
    Choi, Jae Young
    Plataniotis, Konstantinos N.
    Ro, Yong Man
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [34] Multimodal Emotion Recognition Framework Using a Decision-Level Fusion and Feature-Level Fusion Approach
    Devi, C. Akalya
    Renuka, D.
    IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8909 - 8920
  • [35] Hidden Markov Models for Feature-level Fusion of Biometrics on Mobile Devices
    Gofman, Mikhail I.
    Mitra, Sinjini
    Smith, Nicholas
    2016 IEEE/ACS 13TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2016,
  • [36] Feature-level fusion of fingerprint and finger-vein for personal identification
    Yang, Jinfeng
    Zhang, Xu
    PATTERN RECOGNITION LETTERS, 2012, 33 (05) : 623 - 628
  • [37] Feature-level Fusion of Convolutional Neural Networks for Visual Object Classification
    Ergun, Hilal
    Sert, Mustafa
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2173 - 2176
  • [38] Schizophrenia diagnosis using innovative EEG feature-level fusion schemes
    Atefeh Goshvarpour
    Ateke Goshvarpour
    Physical and Engineering Sciences in Medicine, 2020, 43 : 227 - 238
  • [39] Self-Attentive Feature-level Fusion for Multimodal Emotion Detection
    Hazarika, Devamanyu
    Gorantla, Sruthi
    Poria, Soujanya
    Zimmermann, Roger
    IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018), 2018, : 196 - 201
  • [40] Multimodal Feature-Level Fusion for Biometrics Identification System on IoMT Platform
    Xin, Yang
    Kong, Lingshuang
    Liu, Zhi
    Wang, Chunhua
    Zhu, Hongliang
    Gao, Mingcheng
    Zhao, Chensu
    Xu, Xiaoke
    IEEE ACCESS, 2018, 6 : 21418 - 21426