Targeting mammalian organelles with internalizing phage (iPhage) libraries

被引:19
|
作者
Rangel, Roberto [1 ]
Dobroff, Andrey S. [1 ]
Guzman-Rojas, Liliana [1 ]
Salmeron, Carolina C. [1 ]
Gelovani, Juri G. [2 ]
Sidman, Richard L. [3 ]
Pasqualini, Renata [1 ]
Arap, Wadih [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, David H Koch Ctr, Houston, TX 77030 USA
[2] Wayne State Univ, Dept Biomed Engn, Detroit, MI USA
[3] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Dept Neurol, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
COMBINATORIAL PEPTIDE SELECTION; SUBCELLULAR FRACTIONATION; ANTENNAPEDIA HOMEODOMAIN; INTERLEUKIN-11; RECEPTOR; TUMOR VASCULATURE; HOMING PEPTIDES; 3RD HELIX; DELIVERY; DISPLAY; CELLS;
D O I
10.1038/nprot.2013.119
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Techniques that are largely used for protein interaction studies and the discovery of intracellular receptors, such as affinity-capture complex purification and the yeast two-hybrid system, may produce inaccurate data sets owing to protein insolubility, transient or weak protein interactions or irrelevant intracellular context. A versatile tool for overcoming these limitations, as well as for potentially creating vaccines and engineering peptides and antibodies as targeted diagnostic and therapeutic agents, is the phagedisplay technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries using a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and for fingerprinting functional protein domains in living cells. Here we explain the design, cloning, construction and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in similar to 8 weeks.
引用
收藏
页码:1916 / 1939
页数:24
相关论文
共 50 条
  • [41] Phage escape libraries for checkmate analysis
    Dickerson, Tobin J.
    McKenzie, Kathleen M.
    Hoyt, Amanda S.
    Wood, Malcolm R.
    Janda, Kim D.
    Brenner, Sydney B.
    Lerner, Richard A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (31) : 12703 - 12708
  • [42] Hot spot phage display libraries
    Natalie DeWitt
    Nature Biotechnology, 1999, 17 (6) : 523 - 523
  • [43] Diversity and censoring of landscape phage libraries
    Kuzmicheva, G. A.
    Jayanna, P. K.
    Sorokulova, I. B.
    Petrenko, V. A.
    PROTEIN ENGINEERING DESIGN & SELECTION, 2009, 22 (01): : 9 - 18
  • [44] Phage display of combinatorial antibody libraries
    Current Opinion in Biotechnology, 8 (04):
  • [45] Filamentous phage display of oligopeptide libraries
    Burritt, JB
    Bond, CW
    Doss, KW
    Jesaitis, AJ
    ANALYTICAL BIOCHEMISTRY, 1996, 238 (01) : 1 - 13
  • [46] Antibodies from phage antibody libraries
    Bradbury, ARM
    Marks, JD
    JOURNAL OF IMMUNOLOGICAL METHODS, 2004, 290 (1-2) : 29 - 49
  • [47] Phage display of combinatorial antibody libraries
    Rader, C
    Barbas, CF
    CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (04) : 503 - 508
  • [48] Direct Targeting of Proteins from the Cytosol to Organelles: The ER versus Endosymbiotic Organelles
    Kim, Dae Heon
    Hwang, Inhwan
    TRAFFIC, 2013, 14 (06) : 613 - 621
  • [49] Selection of internalizing ligand-display phage using rolling circle amplification for phage recovery
    Burg, M
    Ravey, EP
    Gonzales, M
    Amburn, E
    Faix, PH
    Baird, A
    Larocca, D
    DNA AND CELL BIOLOGY, 2004, 23 (07) : 457 - 462
  • [50] Biosynthetically lipid-modified human scFv fragments from phage display libraries as targeting molecules for immunoliposomes
    deKruif, J
    Storm, G
    vanBloois, L
    Logtenberg, T
    FEBS LETTERS, 1996, 399 (03) : 232 - 236