Thermodynamic analysis of cavern and throttle valve in large-scale compressed air energy storage system

被引:33
|
作者
Zhang, Shuyu [1 ]
Wang, Huanran [1 ]
Li, Ruixiong [1 ]
Li, Chengchen [1 ]
Hou, Fubin [2 ]
Ben, Yue [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shanxi, Peoples R China
[2] Staw Nucl Elect Power Planning Design & Res Inst, Beijing 100095, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressed air energy storage; Throttle valve; Cavern; Equation of state for real gas; Thermodynamic analysis; PRESSURE VARIATIONS; POWER-GENERATION; OPTIMIZATION; SIMULATION; REFRIGERATION; TEMPERATURE; SELECTION;
D O I
10.1016/j.enconman.2018.11.055
中图分类号
O414.1 [热力学];
学科分类号
摘要
The compressed air energy storage system has the potential to enable large-scale implementation of renewable energies. However, the exergy destruction in the throttle valve and cavern is an important factor that affects the overall performance of the system. The conventional diabatic compressed air energy storage system consisted of compressors, heat exchangers, cavern, combustion chambers and turbines was studied and parameters of the Huntorf plant were adopted for calculation. Mathematical models of the components in the compressed air energy storage system were developed based on the equation of state for the real gas and the thermodynamic laws. The models are derived on the basis of assumptions that the inlet and outlet air flow rates of the cavern are negligible and that the system is operated in steady state. The test data of the Huntorf plant during the initial test was used to validate the models. Sensitivity analyses were conducted to identify the domain parameters that affect the exergy destruction in the cavern and throttle valve. The results indicated that 18.85% of the stored exergy was lost in the cavern and throttle valve during a complete cycle. The exergy destruction in the cavern was higher than that in the throttle valve, and the exergy destruction coefficients in the cavern and throttle varied with opposite tendencies when the parameters were changed. The heat transfer coefficient, injected air temperature, and initial temperature of the cavern were found to highly affect the total exergy destruction coefficient. Higher injected air temperature and lower cavern initial temperature reduces the total exergy destruction in the cavern and throttle valve.
引用
收藏
页码:721 / 731
页数:11
相关论文
共 50 条
  • [21] Stability analysis of concrete plugs in a pilot cavern for compressed air energy storage
    Song, W. K.
    Ryu, D. W.
    Lee, Y. K.
    HARMONISING ROCK ENGINEERING AND THE ENVIRONMENT, 2012, : 1813 - 1816
  • [22] Thermodynamic evaluation for a small scale compressed air energy storage system by integrating renewable energy sources
    Ciocan, Alexandru
    Tazerout, Mohand
    Ciocan, Alexandru
    Prisecaru, Tudor
    Ciocan, Alexandru
    Durastanti, Jean-Felix
    2015 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2015, : 455 - 460
  • [23] An accurate bilinear cavern model for compressed air energy storage
    Zhan, Junpeng
    Ansari, Osama Aslam
    Liu, Weijia
    Chung, C. Y.
    APPLIED ENERGY, 2019, 242 : 752 - 768
  • [24] Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy
    Chen, Xiaotao
    Xue, Xiaodai
    Si, Yang
    Liu, Chengkui
    Chen, Laijun
    Guo, Yongqing
    Mei, Shengwei
    ENTROPY, 2020, 22 (07)
  • [25] Thermo fluid behavior in the cavern for the compressed air energy storage gas turbine system
    Yoshida, H
    Tada, S
    Oishi, Y
    Hatoya, T
    Echigo, R
    Hang, CY
    HEAT TRANSFER 1998, VOL 6: GENERAL PAPERS, 1998, : 523 - 528
  • [26] Thermodynamic analysis of a hybrid system combining compressed air energy storage and pressurized water thermal energy storage
    He, Xin
    Wang, Huanran
    Ge, Gangqiang
    Liu, Yitong
    Zhang, Yufei
    APPLIED THERMAL ENGINEERING, 2023, 229
  • [27] Thermodynamic analysis of a novel adiabatic compressed air energy storage system with water cycle
    Zhen Xu
    Haiyang Yang
    Yingchun Xie
    Jinchi Zhu
    Chaoqun Liu
    Journal of Mechanical Science and Technology, 2022, 36 : 3153 - 3164
  • [28] THERMODYNAMIC ANALYSIS OF AN ADVANCED SOLAR-ASSISTED COMPRESSED AIR ENERGY STORAGE SYSTEM
    Udell, Kent
    Beeman, Michael
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2016, VOL 2, 2016,
  • [29] Thermodynamic analysis of a novel adiabatic compressed air energy storage system with water cycle
    Xu, Zhen
    Yang, Haiyang
    Xie, Yingchun
    Zhu, Jinchi
    Liu, Chaoqun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (06) : 3153 - 3164
  • [30] Thermodynamic and exergy analysis of a combined pumped hydro and compressed air energy storage system
    Mozayeni, Hamidreza
    Wang, Xiaolin
    Negnevitsky, Michael
    SUSTAINABLE CITIES AND SOCIETY, 2019, 48