COMBINATORIAL BATCH CODES

被引:48
|
作者
Paterson, M. B. [1 ]
Stinson, D. R. [2 ]
Wei, R. [3 ]
机构
[1] Univ London, Dept Math, Egham TW20 0EX, Surrey, England
[2] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Lakehead Univ, Dept Comp Sci, Thunder Bay, ON P7B 5E1, Canada
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Batch codes; combinatorial set system;
D O I
10.3934/amc.2009.3.13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study batch codes, which were introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [4]. A batch code specifies a method to distribute a database of n items among m devices (servers) in such a way that any k items can be retrieved by reading at most t items from each of the servers. It is of interest to devise batch codes that minimize the total storage, denoted by N, over all m servers. We restrict out attention to batch codes in which every server stores a subset of the items. This is purely a combinatorial problem, so we call this kind of batch code a "combinatorial batch code". We only study the special case t = 1, where, for various parameter situations, we are able to present batch codes that are optimal with respect to the storage requirement, N. We also study uniform codes, where every item is stored in precisely c of the m servers ( such a code is said to have rate 1/c). Interesting new results are presented in the cases c = 2, k - 2 and k - 1. In addition, we obtain improved existence results for arbitrary fixed c using the probabilistic method.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
  • [21] Lower Bounds for Total Storage of Multiset Combinatorial Batch Codes using Linear Programming
    Chee, Yeow Meng
    Kiah, Han Mao
    Zhang, Hui
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2364 - 2368
  • [22] COMBINATORIAL CODES.
    Da Rocha, V.C.
    [J]. 1600, (21):
  • [23] COMBINATORIAL GRAY CODES
    JOICHI, JT
    WHITE, DE
    WILLIAMSON, SG
    [J]. SIAM JOURNAL ON COMPUTING, 1980, 9 (01) : 130 - 141
  • [24] Control by combinatorial codes
    Arjumand Ghazi
    K. VijayRaghavan
    [J]. Nature, 2000, 408 : 419 - 420
  • [25] Linear Batch Codes
    Lipmaa, Helger
    Skachek, Vitaly
    [J]. CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 245 - 253
  • [26] Batch codes based on lifted multiplicity codes
    Polyanskaya, Rina
    Polyanskii, Nikita
    [J]. 2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 69 - 74
  • [27] Array Codes for Functional PIR and Batch Codes
    Nassar, Mohammad
    Yaakobi, Eitan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (02) : 839 - 862
  • [28] Array Codes for Functional PIR and Batch Codes
    Nassar, Mohammad
    Yaakobi, Eitan
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1024 - 1029
  • [29] ON THE MINIMUM DISTANCE OF COMBINATORIAL CODES
    TOLHUIZEN, L
    VANLINT, JH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) : 922 - 923
  • [30] Combinatorial constructions of separating codes
    Fernández, Marcel
    Livieratos, John
    Martín, Sebastià
    [J]. Journal of Complexity, 2025, 86