Linear-mixed effects models for feature selection in high-dimensional NMR spectra

被引:15
|
作者
Mei, Yajun [2 ]
Kim, Seoung Bum [1 ]
Tsui, Kwok-Leung [2 ]
机构
[1] Univ Texas Arlington, Dept Ind & Mfg Syst Engn, Arlington, TX 76019 USA
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
False discovery rate; Feature selection; Linear-mixed effects models; Multiple hypothesis testing; Nuclear magnetic resonance; FALSE DISCOVERY RATE; PATTERN-RECOGNITION ANALYSIS; METABOLIC-RESPONSES; METABONOMICS; TOXICITY; CLASSIFICATION;
D O I
10.1016/j.eswa.2008.06.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection in metabolomics can identify important metabolite features that play a significant role in discriminating between various conditions among samples. In this paper, we propose an efficient feature selection method for high-resolution nuclear magnetic resonance (NMR) spectra obtained from time-course experiments. Our proposed approach combines linear-mixed effects (LME) models with a multiple testing procedure based on a false discovery rate. The proposed LME approach is illustrated using NMR spectra with 574 metabolite features obtained for an experiment to examine metabolic changes in response to sulfur amino acid intake. The experimental results showed that classification models constructed with the features selected by the proposed approach resulted in lower rates of misclassification than those models with full features. Furthermore, we compared the LME approach with the two-sample t-test approach that oversimplifies the time-course factor. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4703 / 4708
页数:6
相关论文
共 50 条
  • [41] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    [J]. NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : IS23 - IS25
  • [42] Feature selection for high-dimensional data in astronomy
    Zheng, Hongwen
    Zhang, Yanxia
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 41 (12) : 1960 - 1964
  • [43] Feature selection for high-dimensional imbalanced data
    Yin, Liuzhi
    Ge, Yong
    Xiao, Keli
    Wang, Xuehua
    Quan, Xiaojun
    [J]. NEUROCOMPUTING, 2013, 105 : 3 - 11
  • [44] A filter feature selection for high-dimensional data
    Janane, Fatima Zahra
    Ouaderhman, Tayeb
    Chamlal, Hasna
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2023, 17
  • [45] Feature selection for high-dimensional temporal data
    Tsagris, Michail
    Lagani, Vincenzo
    Tsamardinos, Ioannis
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [46] Feature selection for high-dimensional temporal data
    Michail Tsagris
    Vincenzo Lagani
    Ioannis Tsamardinos
    [J]. BMC Bioinformatics, 19
  • [47] Feature Selection with High-Dimensional Imbalanced Data
    Van Hulse, Jason
    Khoshgoftaar, Taghi M.
    Napolitano, Amri
    Wald, Randall
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 507 - 514
  • [48] High-dimensional feature selection for genomic datasets
    Afshar, Majid
    Usefi, Hamid
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 206
  • [49] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    [J]. ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011,
  • [50] High-Dimensional Mixed Graphical Models
    Cheng, Jie
    Li, Tianxi
    Levina, Elizaveta
    Zhu, Ji
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 367 - 378