Cellular mechanisms for bi-directional regulation of tubular sodium reabsorption

被引:42
|
作者
Aperia, A
Fryckstedt, J
Holtback, U
Belusa, R
Cheng, XJ
Eklof, AC
Li, DL
Wang, ZM
Ohtomo, Y
机构
关键词
D O I
10.1038/ki.1996.259
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The molecular mechanisms underlying the regulation of sodium excretion are incompletely known. Here we propose a general model for a bi-directional control of tubular sodium transporters by natriuretic and antinatriuretic factors. The model is based on experimental data from studies on the regulation of the activity of Na+,K+-ATPase, the enzyme that provides the electrochemical gradient necessary for tubular reabsorption of electrolytes and solutes in all tubular segments. Regulation is carried out to a large extent by autocrine and paracrine factors. Of particular interest are the two catecholamines, dopamine and norepinephrine. Dopamine is produced in proximal tubular cells and inhibits Na+,K+-ATPase activity in several tubule segments. Renal dopamine availability is regulated by the degrading enzyme, catechol-O-methyl transferase. Renal sympathetic nerve endings contain norepinephrine and neuropeptide Y (NPY). Activation of alpha-adrenergic receptors increase and activation of beta-adrenergic receptors decrease Na+,K+-ATPase activity. alpha-Adrenergic stimulation increases the Na+ affinity of the enzyme and thereby the driving force for transcellular Na+ transport. NPY acts as a master hormone by synergizing the alpha- and antagonizing the beta-adrenergic effects. Dopamine and norepinephrine control Na+,K+-ATPase activity by exerting opposing forces on a common intracellular signaling system of second messengers, protein kinases and protein phosphatases, ultimately determining the phosphorylation state of Na+,K+-ATPase and thereby its activity. Important crossroads in this network are localized and functionally defined. Phosphorylation sites for protein kinase A and C have been identified and their functional significance has been verified.
引用
收藏
页码:1743 / 1747
页数:5
相关论文
共 50 条
  • [21] Microtubules as active tracks for bi-directional cellular traffic of motor proteins
    Sataric, M. V.
    Budinski-Petkovic, LJ.
    Loncarevic, I.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (32): : 5387 - 5398
  • [22] Cellular automata cryptographic model based on bi-directional toggle rules
    Oliveira, GMB
    Coelho, AR
    Monteiro, LHA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (08): : 1061 - 1068
  • [23] BI-DIRECTIONAL SODIUM ION TRANSPORT IN DISTAL AIRWAY EPITHELIA OF SWINE
    Ianowski, J. P.
    Murray, B.
    Tam, J. S.
    Machen, T. E.
    Luan, X.
    PEDIATRIC PULMONOLOGY, 2019, 54 : S169 - S169
  • [24] Bi-directional hoeing in maize
    Naruhn, Georg
    Schneevoigt, Valentin
    Hartung, Jens
    Peteinatos, Gerassimos
    Moeller, Kurt
    Gerhards, Roland
    WEED RESEARCH, 2023, 63 (06) : 348 - 360
  • [25] A bi-directional multilayer perceptron
    Jedra, M
    El Ouardighi, A
    Essaid, A
    Limouri, M
    NEURAL PROCESSING LETTERS, 1999, 10 (02) : 89 - 95
  • [26] Bi-directional OLED microdisplay
    Vogel, U.
    Kreye, D.
    Richter, B.
    Bunk, G.
    Reckziegel, S.
    Herold, R.
    Scholles, M.
    Toerker, M.
    Amelung, J.
    IDW '07: PROCEEDINGS OF THE 14TH INTERNATIONAL DISPLAY WORKSHOPS, VOLS 1-3, 2007, : 1051 - 1054
  • [27] Bi-directional reflectance of corals
    Joyce, KE
    Phinn, SR
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (02) : 389 - 394
  • [28] Bi-Directional Transition Nets
    Staines, Anthony Spiteri
    APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 1836
  • [29] A Bi-Directional Multilayer Perceptron
    M. Jedra
    A. El Ouardighi
    A. Essaid
    M. Limouri
    Neural Processing Letters, 1999, 10 : 89 - 95
  • [30] Bi-directional Multilayer Perceptron
    Lab. Conception and Systèmes, Faculté des Sciences, Avenue Ibn Batouta, Rabat 10000, Morocco
    Neural Process Letters, 2 (89-95):